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Abstract 

The distance to a star is one of the most fundamental pieces of information that can be calculated about it. Currently, 
several methods exist for calculating distance; however, many of them are quite inefficient and prone to error. To 
combat this, one could classify to find its properties and subsequently use the classification to calculate the distance. 
Tools exist to classify stars, but lack in terms of accuracy and ease of use. To make measuring distance more efficient 
and accessible for professional and amateur astronomers alike, we developed a novel method for measuring stellar 
distances using spectroscopic parallax and machine learning. The procedure of this project goes in two steps: first, to 
utilize Google’s MobileNetV2 to identify a star’s spectral type on the Morgan-Keenan System with 97.9% accuracy, 
and second, to use these classifications to calculate the distance to the star with relatively low error. Classifying a star 
into a Morgan-Keenan System provides data on the temperature and color of a star through spectral class and size, 
luminosity, and evolutionary phase through the luminosity class, and by combining this with Hertzsprung-Russell 
Diagram data, we may calculate the absolute magnitude, or how bright the star is at a standardized distance from 
Earth. Using the image itself, the apparent magnitude, or how bright the star looks from Earth, can be calculated. The 
distance can then be calculated by comparing the absolute and apparent magnitude using a method called 
spectroscopic parallax. Applying computations to this method makes large telescopes much more cost-efficient. 
 
Keywords: Spectroscopic parallax, Morgan-Keenan System, Hertzsprung-Russell Diagram, Star Distance, Machine 
Learning, Transfer Learning 
 
1. Introduction 

 
1.1 Background 

 
Measuring the distance to a star is important in understanding the expansion of the universe, mapping the structure 

of the Milky Way, and planning future space missions. Current methods of measuring distance usually involve long 
timespans or a range of uncertainties (Carroll and Ostlie, 2018), and as such, large inefficiencies are created in the 
process. To combat this, the goal of this project was to create an efficient and accurate way to measure distance using 
computational analysis of images. The most effective way to achieve this was through using computer vision to 
visually analyze an image of a star and compare its intrinsic brightness to its apparent brightness to determine distance. 

 
1.2 The Morgan-Keenan System 

 
The Morgan-Keenan System is a method currently used by astronomers to classify stars. There are three main 

aspects of the classification in the Morgan-Keenan System: the spectral class, spectral subclass, and the luminosity 
class. The spectral class of a star is divided into categories that consist of O, B, A, F, G, K, and M, and from it, one  
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can get the temperature and color of a star. As a star goes 
from O to M, it goes from being bluer and hotter to being 
redder and cooler. The spectral subclass further divides a 
spectral class from categories 0 to 9. The properties of a star 
that falls into a spectral class are shown in Figure .The 
luminosity class of a star is mainly divided into categories I, 
II, III, IV, and V, with I being further divided into Ia or Ib. 
Luminosity classes can provide information on a star’s size, 
luminosity, and evolutionary phase. A general description of 
a star that falls into each luminosity class is shown in Table 
1. 

 
 
1.3    The Hertzsprung-Russell Diagram 

 
The Hertzsprung-Russell Diagram plots the luminosity 

against the temperature in a decreasing direction for a number of 
stars. An example is shown in Figure 2. 

The Hertzsprung-Russell Diagram is highly valuable in the 
comparison of stars, especially as stars tend to clump together by 
luminosity class, as can be observed in Figure . An interesting trend 
to note is that main sequence stars tend to follow a path diagonally 
from the top left to the bottom right of the diagram. The data on 
the Hertzsprung-Russell Diagram can be used to approximate the 
absolute magnitude of a star given both the spectral class and the 

luminosity class, which work because they are measures of temperature and luminosity, respectively. 
 
1.4 The Stellar (Trigonometric) Parallax Method of Measuring 

Distance 
 

One method for measuring distance that astronomers currently 
use is known as stellar parallax. A diagram showing how it works is 
shown in Figure  (Amos, 2016). 

 

 
Figure 3. An illustration of the stellar parallax method. 

 
When Earth makes half an orbit around the sun, the position of a nearby star shifts ever so slightly. Such a shift 

can be measured using high-precision equipment from Earth; however, such a small shift means that it becomes 
difficult to measure distances using stellar parallax beyond 100 parsecs (pc) from Earth. In addition, the method takes 
six months to complete one measurement. 

 
Figure 1. A chart of the Morgan-Keenan System 
spectral classes and the range of properties for stars 
falling into specific categories (Budassi, 2024). Table 1. A chart of the Morgan-Keenan System 

luminosity classes and a general description of 
stars in each type of luminosity class (Brau, 2016). 

Class Description 

Ia Bright Supergiants 

Ib Supergiants 

II Bright giants 

III Giants 

IV Subgiants 

V Main-sequence stars and dwarfs 

 

 
Figure 2. An example of the Hertzsprung-
Russell Diagram where color and spectral 
class are plotted on the x-axis, and luminosity 
and absolute magnitude are plotted on the y-
axis (Althaus et al., 2010). 
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The distance to the star in pc, denoted by d, can be calculated from the parallax angle in arcseconds (as), denoted 
by p'', using Equation (1) (Carroll & Ostlie, 2018): 

𝑑 =
1
𝑝!!                     (1) 

The parallax angle is also commonly measured in terms of milliarcseconds (mas), in which case the distance to 
the star in parsecs can be calculated using Equation (2): 

𝑑 =
1000
𝑝!!                      (2) 

1.5 Literature Review 
 

Existing work has shown to be able to classify stars using different types of machine learning models; however, 
many come with some caveats. First, these tools are only able to classify stars and cannot use these classifications to 
then find the distance to them. Second, most of them only reach the 70-80% accuracy range (Dafonte et al., 2020; 
Hungund, 2020; Kyritsis et al., 2022). Third, many of these tools require the actual stellar spectra as inputs, meaning 
that individual values such as redshift z have to be plugged in for classification. This can mean that over 20 values 
have to be inputted for a single classification. In addition, no current work has been found that utilizes machine 
learning to directly find the distance to stars. As such, the usefulness of a tool that can efficiently and accurately 
classify stars and find the distance to them is evident. 

 
2. Materials and Methods 

 
2.1  Data Collection 

 
A large dataset is required to create a machine-learning model. The first step in compiling a large dataset of stars 

was to find the names of many, and so a list of 430 stars was gathered from the List of International Astronomical 
Union (IAU)-approved Star Names (International Astronomical Union | IAU, 2015). Once the list of star names was 
gathered, the Set of Identifications, Measurements and Bibliography for Astronomical Data (SIMBAD) online 
astronomical database was queried for the spectral type and parallax angles in mas for each star. The parallax angles 
were subsequently converted into distance by finding 1000 multiplied by the multiplicative inverse of the parallax 
angle. The spectral type was also parsed into a spectral class, spectral subclass, and luminosity class. Then, the 
HiPS2FiTS cutout API 
(Hips2fits - Fast Generation of 
FITS Cutouts from HiPS 
Datasets, n.d.), which can 
provide an image of a celestial 
object given a name, was 
queried for images of each star 
in the CDS/P/DSS2/color 
Hierarchical Progressive 
Surveys (HiPS) survey, which 
is similar to a color scheme. 
This ensured that the images 
would come out in colors 
representative of how humans 
view the stars, so an O-type star would be blue, an M-type star would be red, and a B-type star would be bluer than 
an A-type star but not more than an O-type star. Selected data entries are shown in Figure 4 and Table 2. 

 
 

Table 2. An example of the properties of 5 stars from the dataset of 430 stars. 

Star Name Spectral 
Class 

Spectral Subclass Luminosity Class Distance (parsecs) 

Alnitak O 9 I 225.73 

Betelgeuse M 1 I 152.67 

Maia B 8 III 117.51 

Taiyangshou K 0 III 60.834 

Vega A 0 V 7.6795 
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Alnitak Betelgeuse Maia Taiyangshou Vega 
Figure 4. An example of 5 stars from the dataset of 430 stars in the CDS/P/DSS2/color HiPS survey (Wenger et al., 2000). 

For all queries, the Python programming language, along with the Astroquery, Selenium, and Requests libraries 
(Chandra and Varnasi, 2015; Ginsburg et al., 2019; Price-Whelan et al., 2018), were used to query the databases and 
perform web scraping in order to successfully gather the images. 

 
2.2  Data Augmentation 

 
It was decided that using image augmentation, or an expansion of the dataset, would be useful in improving the 

accuracy of the machine learning model. The augmentation served a twofold purpose. First, it generally expanded the 
image dataset to an adequate amount. The original data came in a very unbalanced shape: whereas there were a few 
hundred stars for certain spectral classes, other spectral classes, such as O, had only six stars. As such, by performing 
image augmentation, sufficient amounts of images were made for each category. Second, by rotating and flipping 
images, it encouraged the machine learning model to focus more on the star at the center of the image, which does not 
change very much due to it being approximately spherical and symmetrical, instead of the background of the star, 
which does not matter in its classification. Being able to recognize stars in various orientation was very beneficial in 
improving the accuracy of the model, which is the main reason why these particular methods of augmentation were 
chosen as opposed to other methods, such as cropping or changing colors. The geometric operations performed on the 
images were combinations of rotating the images by varying multiples of 90° and flipping them over the x or y-axis. 
The Python programming language, along with the OpenCV, Pillow, and Albumentations libraries (Bradski, 2000; 
Buslaev et al., 2020; Clark, 2015; Kalinin, 2018), were used to read images and perform geometric operations on them 
to expand the dataset. An example of how images were augmented is shown in Figure 5 below. 

 

    

Original Rotated 90° Counterclockwise 
(CCW) Reflected across the x-axis Rotated 90° CCW and reflected 

across the x-axis 
Figure 5. An image of the star Alnitak with various geometric operations performed upon it 

2.3  Machine Learning Model Creation 
 

Once the dataset was expanded, three separate machine-learning models were created to classify stars into spectral 
class, spectral subclass, and luminosity class. Since this tool is designed for accessible use, it was decided that instead 
of programming an entirely new Convolutional Neural Network (CNN), a type of machine learning model well-suited 
to image classification tasks, using Google’s MobileNetV2 (Sandler et al., 2018; Sandler and Howard, 2018), a 
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specialized type of CNN that was designed to be light and efficient, with applied transfer learning, where a previously 
trained model is trained on a new task to boost performance, would be a more efficient and low-cost method that could  
be more easily turned into a web application for 
other astronomers to use. As such, a machine-
learning model was created in JavaScript using 
the Tensorflow.js (tfjs) library. The model itself 
was constructed of the MobileNetV2 with two 
added Dense layers, which helps put weights on 
different extracted features. The layers in the 
model filter down the image to figure out which 
features in the image are useful to classification 
and put weights on these features. In addition, 
HyperText Markup Language (HTML) and 
Cascading Style Sheets (CSS) were used to 
develop a frontend that connects the backend 
machine-learning model to an accessible user 
interface so that the web application could be 
accessed by professional and amateur 
astronomers alike. The structure of the machine 
learning model is shown in Figure 6. 

The machine learning model is designed to learn a bit like a human. Each time an image is fed into the machine 
learning model, it understands which parts of the image determine the classifications and which parts of the image to 
ignore, becoming more and more accurate each time it trains. The difference between such a model and a human is 
that the model is much more precise with the features in the image it uses to classify it. 

In the machine learning model, the only parameter that was used the image input. For hyperparameters, after 
performing a grid search, which tries many different combinations to find the optimal one, it was decided to use a 
learning rate of 0.001 and a batch size of 16.  
 
2.4  Spectroscopic Parallax Calculation from Classifications 
 

After training the machine learning model to classify stars, the classifications were then used to calculate the 
distance to a star using the spectroscopic parallax method, which relies on comparing how bright a star actually is at 
a standardized distance, which is known as the absolute magnitude, to how bright the star looks from the Earth, known 
as the apparent magnitude, to find the distance. The first step in the spectroscopic parallax method was to calculate 
the absolute magnitude of the star. To do so, the output classifications from the machine learning model were used 
along with standard textbook data. An example of the data is shown in Table 3. 
 
Table 3. An example of the standard textbook data to find the (visual) absolute magnitude, column MV, from the spectral type 
for luminosity class III (Carroll and Ostlie, 2018). Other tables show similar data for luminosity classes I and V. 

Giant Stars (Luminosity Class III) 
Sp. Type 𝑇!	(𝐾) 𝐿/𝐿⊙ 𝑅/𝑅⊙ 𝑀/𝑀⊙ 𝑀#$% 𝐵𝐶 𝑀& 𝑈 − 𝐵 𝐵 − 𝑉 

O5 39400 741000 18.5 — −9.94 −4.05 −5.9 −1.18 −0.32 
O6 37800 519000 16.8 — −9.55 −3.80 −5.7 −1.17 −0.32 
O7 36500 375000 15.4 — −9.20 −3.58 −5.6 −1.14 −0.32 
O8 35000 27700 14.3 — −8.87 −3.39 −5.5 −1.13 −0.31 

 
The second step in performing spectroscopic parallax was calculating the apparent magnitude from the image of 

the star. To do this, first, the pixel brightness of the entire image was found, and then the pixel brightness of the 
background of the image was subtracted to find the brightness of only the star. This brightness was then divided by  

 
Figure 6. The structure of the machine learning model used to classify 
spectral class. 224 ⨉ 224 ⨉ 3 represents the input layer’s dimensions, 
which corresponds with the image dimensions of 224 ⨉ 224 pixels, 
and three values in each pixel for red, green, and blue. The output 
layer has seven values, one for the machine learning model’s 
confidence that an image falls in a class from O-M. The class with the 
highest confidence rating is selected as the output. 
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that of a reference star, which in this 
case was Vega, to get the apparent 
magnitude. This process is shown in 
Figure 7. 

The third and final step of 
performing spectroscopic parallax 
involves using distance modulus to 
compare the absolute and apparent 
magnitude values to find the distance 
to the star. The distance modulus 
formula is shown in Equation (3), 
where m is the apparent magnitude, 
M is the absolute magnitude, and dpc 
is the distance to the star in pc 
(Carroll and Ostlie, 2018). 

 
𝑚−𝑀 = −5 + 5 𝑙𝑜𝑔"# 𝑑$% (3) 

 
To directly get a value of dpc, the equation was solved to yield Equation  

𝑑$% = 10('()*+)/+               (4) 

Subsequently, for each star, the absolute and apparent magnitude were calculated, and then Equation 4 was applied to 
calculate the distance. 

 
3. Results 

 
3.1 Discussion of Error Metrics 

 
Three error metrics were used in this section to determine the error in absolute magnitude, apparent magnitude, 

and distance. For absolute and apparent magnitude, relative root mean square error (RRMSE) was calculated as shown 
in Equation (4). For the distance, the mean percent error (MPE) as calculated in Equation (5) instead of RRMSE. In 
both of these equations, xi is an actual value, x̂i is a calculated/observed value, and N is the number of values in the set 
(which in this case is 61). In this case, MPE was used instead because it not only shows the average percentage error 
but is also a useful indicator of possible bias in a model. However, it was replaced by RRMSE for absolute and 
apparent magnitude as MPE fails where values are 0, and because some of the absolute and apparent magnitude values 
were 0, MPE was replaced with another error metric. Both metrics serve for useful comparisons as they are expressed 
as a percentage, meaning that they can be compared relative to one another because they are not raw data values. 

𝑅𝑅𝑀𝑆𝐸 = 1
1
𝑁∑ (𝑥. − x/7)01

.2"

∑ (𝑥37)01
.2"

 (5) 

 

𝑀𝑃𝐸 = 100%×
1
𝑁<

𝑥. − 𝑥37
𝑥.

1

.2"

               (6) 

 
3.2 Machine Learning Model Accuracy 

 
Three machine-learning models reached 97.9%, 99.4%, and 97.9% accuracy, respectively, across classifications 

in spectral class, spectral subclass, and luminosity class. These machine learning models, constructed of a 

  

Original Image Image with only the background 
Figure 7. An example of the output of background subtraction on an image using a 
specified cutout border-radius. 
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MobileNetV2 with applied transfer learning, were trained over 50 epochs with a learning rate of 0.001 and a batch 
size of 16. The training/testing accuracy graphs over the 50 epochs for each of the three machine-learning models are 
shown in Figure 8. 

 

   

Spectral Class (97.9%) Spectral Subclass (99.4%) Luminosity Class (97.9%) 

 
Upon manually testing the 

classifications with other images found 
of stars, it was found that the machine 
learning model was able to classify 
them all either completely correctly or 
with a very close classification that was 
off by a spectral subclass. The 
confusion matrix, which shows how the 
machine learning model classified the 
images, is shown in Figure 9.  
 
3.3 Absolute Magnitude Calculations 
 

Given the spectral and luminosity 
classifications, the absolute magnitude 
can be calculated using the Hertzsprung-Russell Diagram data. In order to test the accuracy of the calculated absolute 
magnitude values, the calculated values were plotted against the verified, actual values scraped from various sources 
(Hummel et al., 2013). Perfect accuracy would mean that the plotted points form a straight, diagonal line going from 
the bottom left to the top right of the plot. The plot is shown in Figure 10. 

An r 2 value of 0.818 was calculated for the plotted points 
in Error! Reference source not found.. In addition to the r 2 
value, the RRMSE regression error metric was also calculated, 
as shown in Equation 3, to understand the relative error in the 
calculations of absolute magnitude. Using such metrics allows 
for the relative comparison of error by percentage instead of by 
raw data value. RRMSE was calculated to be 6.59% for the 
absolute magnitude. 
 
3.4  Apparent Magnitude Calculations 
 

A similar procedure was conducted for the apparent 
magnitude as was done for the absolute magnitude. Calculated 
apparent magnitudes were plotted against the actual apparent 
magnitudes, as shown in Figure . 

Figure8. Accuracy graphs over 50 epochs in training for the three machine learning models designed to identify the spectral type 
of a star. The blue line represents the training accuracy, and the orange line is the testing accuracy. 

  

Confusion Matrix for Spectral Class Confusion Matrix for Luminosity Class 
Figure 9. Confusion matrices for the spectral and luminosity class. Items the 
machine learning model classified correctly go down a diagonal from the top left 
to the bottom right. 

 
Figure 10. Calculated vs. Actual Absolute Magnitude 
for 61 stars with known absolute magnitudes that 
could be scraped from various online databases. 
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An r 2 value of 0.651 was calculated for this plot. RRMSE was once again calculated, with a value of 37.0%, 
respectively. The error is relatively higher than that of the absolute magnitude, consistent with Figure 10 and Figure 
11. 

 
3.4 Distance Calculations 

 
The calculated distance values from Equation (4) were plotted against the collected measured distance values 

from SIMBAD; the resulting graph is shown in Figure 12. 
An r 2 value of 0.926 was 

calculated for this plot. The 
calculated MPE is -13.1%, 
indicating an underestimate bias. 

In summary, the machine 
learning model is very accurate in 
classifying the spectral type, 
reaching near 100% accuracy. In 
addition, the calculations for the 
distances have a relatively high r2 
value of 0.926, indicating a 
relatively low error. 
 
4. Discussion 
 
4.1 Error Analysis 
 

Error in the absolute magnitude mainly stems from the approximations made using Hertzsprung-Russell Diagram 
data. For such data, since absolute magnitude was determined using Table 3, where a specific spectral and luminosity 
class were mapped to an absolute magnitude, there is a certain amount of inaccuracies due to variation even for stars 
having the exact same spectral type. Since classification is used instead of regression, there will be a certain amount 
of error due to variation within a class. 

The apparent magnitude has a notably higher error than the absolute magnitude. One possible source of such error 
is with the background subtraction method. Because of the difficulty of completely accurately removing the 
background from the image, for some images, there will be too little background removed, whereas, for others, there 
will be too much removed. Apparent magnitude is usually calculated using data from the charge-coupled devices 
(CCD) of a telescope; however, such data was unavailable for usage in this research project. In the future, utilizing 
such data in this research would create a more effective method for calculating the distance using spectroscopic 
parallax. 

In addition, incorrect classifications could affect the accuracy of the distance calculation. Incorrectly classifying 
the spectral subclass would not have a significant effect on the distance calculation, but incorrectly classifying the 
spectral or luminosity class would have a much larger effect as that means the star is given an entirely different range 
of values for the distance estimate. As the accuracy of the classifications is near 100%, this error is marginalized in 
this research. 

The distance calculation has a relatively low error compared to what may be expected by most of a method that 
relies only on an image of a star. However, it can be seen that, for larger distances, the calculated distance tends to 
start falling short of the actual distance. This is most likely due to the calculation of the apparent magnitude falling 
short of the actual; while it is accurate for a certain range, as the actual distance becomes larger, the difference becomes 
more noticeable. Another possible source of error here could also be due to different obstacles causing a star to look 
different than it actually does. For example, dust extinction, where electromagnetic radiation is absorbed and scattered 
by interstellar dust and gas, causes a star to look redder than it actually is, a phenomenon known as interstellar 
reddening. To account for this, redshift and blueshift may also have to be taken into account for future models. In 

  
Figure 11. Calculated vs. Actual 
Apparent Magnitude for 61 stars with 
known apparent magnitudes that could 
be scraped from various online 
databases. 

Figure 12. Calculated vs. Actual 
Apparent Magnitude for 61 stars with 
known apparent magnitudes that could 
be scraped from various online 
databases. The perfect-fit trendline is 
plotted for reference. 



Vol. 2024 (12) 560 – 570 
ISSN 2688-3651 [online] 

568 

addition, although atmospheric interference could affect the images taken by telescopes on Earth, most observatories 
utilize what is known as an adaptive optics system to neutralize atmospheric interference in images taken. Telescopes 
in space have no atmospheric interference. 
 
4.2 Future Work 
 

There are multiple improvements and extensions that can be made to this research in the future. One such 
improvement is improving upon the apparent magnitude calculation. As of now, the calculations for apparent 
magnitude rely on performing background subtraction on an image. However, a caveat with this method is the existing 
inaccuracy in removing a background from an image. To correct for this in the future, real telescope CCD data could 
be used. While much of this CCD data is, unfortunately, currently unavailable online, one possible way to obtain such 
data would be to work with other professional astronomers in the field, gather data from the existing telescopes, and 
incorporate that into this research. As it stands, the tool is still quite useful in classifying stars and finding the distance, 
but CCD data could add an improvement to the accuracy. 

Another improvement that could be made would be to gather more Hertzsprung-Russell Diagram data. For this 
research, existing data was used; however, this existing data only covered luminosity classes I, III, and V, and data 
points for certain spectral classes were missing. In order to account for this, a new standardized set of data could be 
created that is able to cover a wider range of spectral and luminosity classes. This would yield better calculations for 
the absolute magnitude, and therefore help make the distance calculation more accurate. 

In the future, one possibility for how this work could be used is by applying it to a telescope in real-time. As a 
telescope takes images of stars, each image could be passed into this model to get an initial estimate for the distance 
to the star. This would allow for rapid distance calculations in real time.  
 
5. Conclusion 
 

This research used three machine learning models to classify stars into the Morgan-Keenan System, and then 
subsequently used these classifications and Hertzsprung-Russell Diagram data to find the distance to these stars. While 
existing tools can classify stars, none were found that can both classify and find the distance to a star. Three main 
steps were followed throughout the process of this research: data collection, in which data was collected on 430 stars; 
machine-learning model training, in which three separate machine-learning models were trained to identify a star and 
classify it; and distance calculation, in which absolute and apparent magnitude were calculated, and then distance 
modulus was applied to find the distance. Both the absolute magnitude and distance calculations were relatively 
accurate and had relatively low error rates, while the apparent magnitude had a slightly higher error rate. Future 
improvements include the addition of more data for an improvement in accuracy as well as an extension of this tool 
to other celestial objects. The output of this research allows astronomers to take rapid data measurements on stars and 
also find the distance to these stars in real-time as photos are taken. Adding such a tool to today’s telescopes will 
vastly improve the capabilities that these telescopes have, and will also make them more cost-effective in the long run. 
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