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Abstract 

Hepatocellular carcinoma (HCC) poses a pressing global health challenge, ranking as the third leading cause of 
cancer-related mortality worldwide. However, the intricate molecular mechanisms underlying its onset remain 
elusive. The primary objective of this study is to identify novel genes associated with the disease progress of HCC. 
Using data from the GEO database, differential gene expression analysis was conducted using the online GEO2R 
tool, followed by functional enrichment analysis. A total of 1,729 upregulated and 1,131 downregulated genes were 
identified in HCC compared with the adjacent normal tissues. PSRC1 was selected for further analysis owing to few 
reports in liver cancer. PSRC1 was significantly upregulated in HCC, which was supported by either bulk or single 
cell RNA sequencing data. PSRC1 was mainly expressed in hepatocytes and tightly correlated to clinic staging and 
tumor grades. High expression of PSRC1 predicted poor prognosis. The current study provided new insight into the 
occurrence and development of HCC.  
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1. Introduction

Liver cancer, a pressing global health issue, is classified into primary liver cancer and secondary metastatic liver
cancer. Among primary liver cancers, hepatocellular carcinoma (HCC) stands out, accounting for 85-90% of cases 
and ranking as the third most lethal cancer worldwide (Chen & Zhang, 2011; El-Serag & Davila, 2011). More than 
80% of HCC-related deaths occur in developing countries, with China having the highest incidence rate of liver cancer, 
accounting for over half of the global burden. Compared to other cancers, the incidence rate of HCC continued to rise 
at a faster pace, claiming the lives of more than 800,000 people each year since 2020. Therefore, finding effective 
treatment methods for HCC is urgent. 

HCC can lead to liver function failure, causing the patients to experience symptoms such as jaundice, ascites 
(fluid buildup in the abdomen), fatigue, and a decline in overall health. The main causes of HCC can come from 
different forms of hepatitis and liver damage, including chronic infection with hepatitis C virus (HCV) or hepatitis B 
virus (HBV), excessive alcohol consumption or smoking, diabetes, obesity, or certain rare genetic disorders 
(Makarova-Rusher et al., 2016). During the developmental stages of HCC, several key molecular entities have been 
identified. While researchers have extensively studied and described the molecular pathogenesis of HCC, and certain 
molecules have emerged as potential early screening and treatment targets for HCC, the precise molecular mechanisms 
contributing to its occurrence remain elusive, a pressing research avenue (Wang & Deng, 2023). 

Proline and serine rich coiled-coil 1 (PSRC1) is a proline-rich protein that is a target for regulation by the tumor 
suppressor protein p53. PSRC1 plays an important role in regulating the cell cycle, particularly during cell division 
(mitosis). By recruiting and regulating microtubule depolymerases, PSRC1 functions as a microtubule destabilizing 
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protein that involves in the proper formation and function of the mitotic spindle, the structure that ensures 
chromosomes are accurately distributed to daughter cells when a cell divides. If PSRC1 is overexpressed or mutated, 
it can disrupt this process, leading to uncontrolled cell division, which is a hallmark of cancer development, including 
in HCC. The C-terminal domain of PSRC1 could bind to the mitotic spindle, while the regulatory N-terminal domain 
controls the C-terminal domain to bind to microtubules and determines the cellular activity of the PSRC1 protein (Jang 
& Fang, 2009). PSRC1 can influence cell proliferation process by promoting faster or abnormal cell division, which 
leads to an increase in tumor growth (Valente et al., 2009). Previous studies have shown that PSRC1 is overexpressed 
in several other cancers, such as colorectal cancer (Gylfe et al., 2013) and oral squamous cell carcinoma (Wang et al., 
2015) and is therefore a potential biomarker and therapeutic target. In colorectal cancer, PSRC1 contains hot spot 
mutations and could potentially be used to develop personalized tumor analysis and therapy (Gylfe et al., 2013). The 
overexpression of PSRC1 is regulated by hypomethylation in the promoter region of the gene in cancer and therefore 
lead to cancer progress. PSRC1 is a prognostic predictor for oral squamous cell carcinoma without lymph node 
metastasis (Wang et al., 2015). However, there is less attention of PSRC1 in hepatocellular carcinoma. Although 
researchers are looking at whether targeting PSRC1 could be a therapeutic strategy to slow down or stop the growth 
of liver tumors, the relationship between PSRC1 and clinical staging, metastasis, and prognosis of liver cancer still 
necessitates investigation (Pan et al., 2023).  

Therefore, this study aimed to identify novel genes associated with the disease progress of HCC. After the gene 
PSRC1 was identified, the correlation between PSRC1 expression, and clinicopathological features and prognosis of 
HCC were investigated to thus clarify the biological role of PSRC1 in HCC.  

 
2. Materials and Methods 

 
2.1 Datasets and Bulk Transcriptomic Data Analysis 

 
The transcriptome refers to the complete set of RNA molecules (or transcripts) in a cell or a group of cells, 

including various types of RNA such as messenger RNAs (mRNAs), ribosomal (rRNAs) and transfer RNA (tRNAs), 
and regulatory non-coding RNAs. It is dynamic and specific to time, environment, tissue, and cell type. High-
throughput transcriptomic approaches include microarray-based and sequencing-based methods. For researchers, 
transcriptome data must be submitted to public databases before their work is published. The Gene Expression 
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) is a public functional genomics data repository hosted by the 
National Center for Biotechnology Information (NCBI). It provides a platform for researchers to deposit, access, and 
analyze various types of high-throughput gene expression data, such as microarrays, next-generation sequencing, and 
other molecular profiling techniques (Clough et al., 2024).  

Two GEO datasets with the accession numbers of GSE202069 (Li et al., 2024) and GSE149614 (Lu et al., 2022) 
(see below single-cell analysis) were used in this study and both datasets were derived from high throughput 
sequencing. The GSE202069 represents bulk RNA sequencing (RNA-seq) at tissue levels from 66 samples with 41 
HCC tumor tissues and 25 adjacent non-tumor liver tissues. The online GEO2R tool, which is an R-based 
(programming language R based) web application based on GEO repository, was used for differential expression 
analysis. The results will be presented in a table including gene symbols, p-value and fold changes between tumor and 
normal (or non-tumor) tissues. Differentially expressed genes (DEGs) were obtained under a strict filter condition for 
the upregulated genes (log2 fold-change>1, Benjamini–Hochberg/BH adjusted P value < 0.01) and downregulated 
genes (log2 fold-change < -1, Benjamini-Hochberg adjusted P value < 0.01), respectively.  

Besides the above GEO datasets, an additional independent cohort of HCC from The Cancer Genome Atlas 
(TCGA) was also used for analysis. TCGA was a landmark cancer genomics program, which molecularly 
characterized over 20,000 primary cancer and matched normal samples spanning 33 cancer types. The University of 
ALabama at Birmingham CANcer data analysis Portal (UALCAN, https://ualcan.path.uab.edu/analysis.html) web 
tool were used to query gene expression profiles in HCC and investigate expressional correlation with 
clinicopathological features, as well as survival analysis (Chandrashekar et al., 2022). TPM (transcripts per million) 
was used to measure gene expression levels. 
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2.2 Single-Cell RNA Sequencing Data Analysis 

 
Single-cell RNA sequencing (scRNA-seq) is an approach to measure the transcripts of genes at the level of 

individual cells, rather than a mass of mixed cells (Olsen & Baryawno, 2018). The GSE149614 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149614) is from scRNA-seq data that comprise > 70,000 
single-cell transcriptomes for 10 HCC patients from four relevant sites including primary tumor, portal vein tumor 
thrombus (PVTT), metastatic lymph node and non-tumor liver. A standard analysis pipeline using the R Seurat 
package (https://satijalab.org/seurat/) was performed to analyze the dataset. Cell types were annotated based on the 
labels directly from data submitters and confirmed by marker gene expression. Briefly, the downloaded raw UMI 
(unique molecular identifier) count data representing gene expression levels in each cell was first normalized to 10,000, 
and then the top 2,000 highly variable genes (HVGs) were selected. After the data were scaled and centered, principal 
component analysis (PCA) based on HVGs was conducted. For dimensionality reduction for single-cell cluster 
visualization, the uniform manifold approximation and projection (UMAP) method was used. UMAP takes the high-
dimensional gene expression profiles of individual cells and maps them onto a 2D or 3D plot, making it easier to 
visualize patterns, clusters, and relationships between different cell types (Islam & Xing, 2023). Cell type labels were 
directly from the authors’ annotation based on the downloaded metadata.  

 
2.3 Functional Enrichment Analysis 

 
Gene functional enrichment analysis is a process that involves identifying the biological functions, processes, 

pathways, or other functional annotations that are overrepresented in a set of genes that exhibit significant expression 
changes or are of interest in a specific context. This analysis helps researchers discern the biological significance and 
potential roles of genes within a particular biological context, such as a disease or experimental condition (Garcia-
Moreno et al., 2022). 

The R package ‘clusterProfiler’ (Wu et al., 2021) was used for functional annotation and enrichment analysis 
based on gene ontology (GO). The package provides a tidy interface to access, manipulate, and visualize enrichment 
results to help users achieve efficient data interpretation. Significant GO terms related biological processes were 
identified when the adjusted p-values (‘BH’ method) were less than or equal to 0.05. 
 
3. Results 
 
3.1 Identification of Differentially Expressed Genes (DEGs) in HCC 
 

The GEO dataset ‘GSE202069’, which comprised 66 samples with 41 HCC tumor tissues and 25 non-tumor 
adjacent normal tissues, were selected, and the online tool GEO2R was used for differential expression analysis. A 
total of 1,729 upregulated and 1,131 downregulated DEGs were identified (Figure 1A). The most significantly 
upregulated genes including GPC3 (glypican 3), AKR1B10 (aldo-keto reductase family 1 member B10), STC2 
(stanniocalcin 2), KPNA2 (karyopherin subunit alpha 2) and CAP2 (cyclase associated actin cytoskeleton regulatory 
protein 2), and so on (Table 1), whereas the most significantly downregulated genes including HAMP (hepcidin 
antimicrobial peptide), STAB2 (stabilin 2), PTH1R (parathyroid hormone 1 receptor), CFP (complement factor 
properdin) and ADAMTS13 (ADAM metallopeptidase with thrombospondin type 1 motif 13), and so on (Table 2).  

Therefore, the results suggested that a large number of genes should be involved in the occurrence and 
development of hepatocellular carcinoma. To further explore the involved biological processes, functional enrichment 
analysis of these DEGs were conducted. It was found that upregulated genes were mainly involved in the cell cycle 
processes (Figure 1B), which accorded with the current knowledge about cancer, which is a group of diseases in which 
cells divide continuously and excessively (Matthews 2022).  Interestingly, the downregulated genes were mainly 
involved in metabolic processes (Figure 1C), indicating that dysregulated metabolism should play an important role 
during oncogenesis of HCC. 
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3.2 PSRC1 and HCC Clinicopathological Correlations 

 
More attention was paid to the upregulated genes owning to their potential roles of targets by small molecule 

drugs. The highly enriched cell cycle related genes were surveyed, and that the gene PSRC1 had not yet received 
much attention in HCC had been found. Therefore, this molecule was the focus in the subsequent study. 

PSRC1 was significantly upregulated in the tumor tissues of HCC than the adjacent normal tissues according to 
the dataset ‘GSE202069’ (Figure 2A). The upregulation was further confirmed by an independent cohort of liver 
cancer from TCGA and closely correlated to clinicopathological features (Figures 2 B&C). Stage refers to the extent 
of cancer, such as how large the tumor is and if it has spread. As shown in Figure 2B, with the increase of clinical 
stages, the expression level of PSRC1 also increased (Figure 2B). Tumor grade often describes how normal or 
abnormal cancer cells look under a microscope. The higher the grade number, the more abnormal the cells look and 
the more aggressive the cancer, and the faster it is likely to grow and spread. Analysis of PSRC1 in various liver 
cancer grades revealed its expression increased as the grading increased (Figure 2C).  

Table 1. A list of differentially expressed up-regulated genes in liver cancer tissues*. 

Symbol Description Log2FC P value Adjusted 
p value Direction 

GPC3 glypican 3 5.87 4.73E-36 8.52E-32 up 
AKR1B10 aldo-keto reductase family 1 member B10 6.01 6.96E-31 2.51E-27 up 

STC2 stanniocalcin 2 4.62 1.54E-30 4.63E-27 up 
KPNA2 karyopherin subunit alpha 2 2.26 8.51E-28 2.19E-24 up 

CAP2 cyclase associated actin cytoskeleton regulatory 
protein 2 2.82 3.66E-27 6.60E-24 up 

MELK maternal embryonic leucine zipper kinase 4.25 5.72E-27 9.37E-24 up 
RRM2 ribonucleotide reductase regulatory subunit M2 3.19 8.62E-27 1.19E-23 up 
ESM1 endothelial cell specific molecule 1 4.71 8.40E-27 1.19E-23 up 

IQGAP3 IQ motif containing GTPase activating protein 3 4.17 1.11E-26 1.43E-23 up 
CTHRC1 collagen triple helix repeat containing 1 5.30 3.06E-26 3.44E-23 up 
* Only the topmost 10 up-regulated genes are shown. 

Table 2. A list of differentially expressed down-regulated genes in liver cancer tissues*. 

Symbol Description Log2FC P value Adjusted 
p value Direction 

HAMP hepcidin antimicrobial peptide -5.98 1.02E-35 9.17E-32 down 
STAB2 stabilin 2 -3.67 9.67E-34 5.81E-30 down 
PTH1R parathyroid hormone 1 receptor -3.61 5.77E-32 2.60E-28 down 

CFP complement factor properdin -3.15 2.04E-27 4.59E-24 down 
ADAMTS1

3 
ADAM metallopeptidase with thrombospondin 
type 1 motif 13 -2.45 2.37E-27 4.75E-24 down 

ADRA2B adrenoceptor alpha 2B -2.70 2.17E-26 2.61E-23 down 
FCN3 ficolin 3 -4.12 3.61E-26 3.76E-23 down 

IL13RA2 interleukin 13 receptor subunit alpha 2 -3.65 5.73E-24 3.04E-21 down 

UICLM up-regulated in colorectal cancer liver 
metastasis -3.55 4.26E-23 1.75E-20 down 

ZFP1 ZFP1 zinc finger protein -2.12 8.41E-23 2.97E-20 down 
* Only the topmost 10 down-regulated genes are shown. 
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Figure 1. Visualization of DEGs in volcano plot and the results of functional enrichment analysis. A. The volcano 
plot shows DEGs in HCC. Each dot represents a gene. The red and blue dots indicate upregulated and 
downregulated DEGs, respectively, under the cutoffs shown in the Methods. B & C. The results of functional 
enrichment analysis for the upregulated (B) and downregulated (C) genes, respectively. The GeneRatio (B & C) 
represents a ratio of the gene count in the input list associated with the given GO term divided by the total number 
of input genes. P values are corrected for multiple testing using the Benjamini-Hochberg (BH) method. 

 
However, PSRC1 showed no differential 

expression in liver cancers between male and 
female patients (Figure 2D). Therefore, this 
suggested that PSRC1 should be involved in 
the progression of liver cancer. 
 
3.3 Single-Cell Transcriptomics of PSRC1  
 

The above analyses were performed in 
cancer tissues, which were composed of many 
different cell types and states that 
dynamically interact. Therefore, the above 
analyzed bulk RNA sequencing (RNA-seq) 
data represented the averaged expressional 
signals from a mixture of cell types but not 
cell type-specific signals. In recent years, 
single-cell RNA sequencing (scRNA-seq) 
technologies have been greatly developed, 
which characterize the transcription state at 
single-cell resolution. Therefore, scRNA-seq 
data can be used to map the cell type-specific 
transcriptome landscape of cancer cells and 
their tumor microenvironment. This suggests 
that scRNA-seq data can uniquely identify 
which cells a gene is expressed in, which cell 
types of those cells belong to, and the 
expression levels in each cell type. 

The single-cell dataset from GSE149614 was used to profile PSRC1 expression. The dataset comprised over 
70,000 single-cell transcriptomes for 10 HCC patients from four relevant sites including primary tumor, portal vein 
tumor thrombus (PVTT), metastatic lymph node and non-tumor liver. These single cells were grouped into nine 

 
Figure 2. PSRC1 is upregulated in HCC shown in box plots and 
associated with clinicopathological features. PSRC1 is 
upregulated in HCC based on the dataset of GSE202069 (A). 
PSRC1 expression is tightly associated with liver cancer stages 
(B) and tumor grades (C), but shows no differential expression 
between male and female (D). The meaning of tumor grades is 
explained as following: Grade 1, well differentiated (low grade); 
Grade 2, moderately differentiated (intermediate grade); Grade 3, 
poorly differentiated (high grade); Grade 4, undifferentiated (high 
grade). The p-values are displayed between the compared groups, 
and p < 0.05 is considered statistically significant.  
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clusters including hepatocytes, myeloid cells, fibroblasts, endothelial cells, T/NK cells, B cells, plasma cells and two 
clusters of myeloid and T/NK cells corresponding to their proliferative states (Figure 3A). Therefore, gene expression 
in these cells from various tissue sources could be analyzed. 

The results showed that PSRC1 was mainly 
expressed in hepatocytes and showed less expression 
levels in fibroblast (Figure 3B). PSRC1 showed far 
less expression in several immune cell types 
including T/NK cells, B cells and plasma cells 
(Figure 3B). Next, hepatocytes were extracted and a 
total of 20,782 hepatocytes were identified. 
Compared with the normal epithelial cells, PSRC1 
showed increased expression in tumor cells, 
especially tumor cells that metastasized to lymph 
nodes (Figure 3C). Consistent with the result, as 
clinical staging increased, PSRC1 expression also 
increased, with the highest expression in the stage 4 
(Figure 3D). These results based on scRNA-seq data 
confirmed the above results in the bulk RNA-seq data 
(Figure 2). Therefore, different data types and data 
sources of HCC supported that PSRC1 was tightly 
associated with clinicopathological features. 
 
3.4  Survival Analysis of PSRC1  

 
The above results suggested a close correlation 

between PSRC1 and the progression of HCC. The 
relationship between PSRC1 expression and patient 
survival were further explored using the TCGA data 
and found that patients with high expression of 
PSRC1 predicted poor prognosis (Figure 4). 
Therefore, this result suggested that PSRC1 could be 
one of the prognostic indicators for HCC.   
 
4.  Discussion 

 
This study identified differentially expressed genes in 
HCC. A total of 1729 upregulated DEGs were 
identified by GEO2R. GPC3 is a cell surface 
proteoglycan involved in cell growth regulation and 
modulation of signaling pathways, such as Wnt 

signaling. It is often used as a diagnostic biomarker for HCC. Its overexpression is associated with tumor growth and 
poor prognosis (Zheng et al., 2022). AKR1B10 is a gene that makes an enzyme responsible for protecting cells from 
harmful chemicals that build up during metabolism. A recent study reported that its elevation is due to compensatory 
upregulation, aimed at protecting hepatocytes from oxidative stress during HCC development (Endo et al., 2021). 
STC2 is involved in cellular stress response, metabolism, and regulation of calcium and phosphate levels. It has high 
levels and is correlated with aggressive tumor behavior. In HCC, STC2 enhances tumor growth and metastasis by 
promoting cell proliferation and resistance to cell death (apoptosis) (Bu et al., 2023). 

 

 
Figure 3. Single-cell analysis of PSRC1 expression in 
HCC. A. UMAP embedding of single-cell clusters 
indicated by different cell types. Each dot in the clusters 
represents one single cell. Uniform Manifold 
Approximation and Projection (UMAP) is a dimension 
reduction technique and is useful for visualizing high-
dimensional scRNA-seq data in low-dimensional space 
(2-dimensions) shown on the x-axis (dimension 
1/UMAP_1) and y-axis (dimension 2/UMAP_2), 
respectively. Cells with similar expression profiles cluster 
together and represent specific cell types, which are 
displayed in different colors. B-D. Dot plots show PSRC1 
expression in various cell types (A), or in the hepatocytes 
from different tumor sites (B) and clinical stages (D), 
respectively. In a dot plot, the dot size represents the 
percentage of cells within each cell type (or cluster) that 
expresses the gene. The color of the dot represents the 
average gene expression, and the relative expression level 
ranges from low to high, indicated by the color bar from 
gray to blue. In B, proliferative myeloid and T/NK cells 
are grouped into the total myeloid and T/NK cells, 
respectively. 
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This study focused on the functional role of PSRC1. 
PSRC1 is located on chromosome 1. The functionality of 
the PSRC1 gene primarily revolves around its potential 
impact on lipid metabolism and cholesterol regulation, and 
has an association with cardiovascular diseases (Wei el al., 
2020). Recent studies have indicated that the variation 
rs599839 within the CELSR2-PSRC1-SORT1 gene cluster 
is associated with cardiovascular events (Al-Eitan et al., 
2020; Castillo-Avila et al., 2023; Goettsch, 2018). While 
their primary focus has been on cardiovascular issues, 
cardiovascular diseases are also linked to non-alcoholic 
fatty liver disease, which may lead to HCC (Meroni et al., 
2021). The involvement of the PSRC1 gene extends 
beyond lipid metabolism and cardiovascular health. 
PSRC1 is implicated in various cancers, showing elevated 
expression in multiple cancer types. Our work revealed that 
PSRC1 was highly expressed in liver cancer, particularly in relation to tumor metastasis, grading and prognosis, 
suggesting that it should be a potential target for liver cancer treatment. 

Additionally, 1131 downregulated DEGs were found. HAMP is a key regulator of iron metabolism, responsible 
for controlling the release of iron from cells. It often leads to iron overload in liver cells, contributing to oxidative 
stress and promoting liver damage and cancer progression. Reduced levels of HAMP can fuel cancer cell proliferation 
and survival (Kouroumalis 2023). STAB2 is a receptor involved in clearing waste molecules and maintaining vascular 
and immune system function. Its loss may impair the liver's ability to remove damaged cells and waste (Harris & 
Baker, 2020; Du et al., 2020). PTH1R is involved in calcium and bone metabolism. Although PTH1R downregulation 
is not as well-studied in HCC, it is known to play a role in tumor suppression in other cancers by regulating cellular 
differentiation and growth (Martin, 2022). 

However, some limitations should be acknowledged. Firstly, further functional experiments and validation studies 
should be needed to confirm the functional roles of PSRC1 in HCC. For example, at the cellular level, its impact on 
cell proliferation and migration can be verified through overexpression or gene knockdown experiments; at the animal 
level, the functional role in tumor occurrence and development through tumor models can be investigated. Moreover, 
this study primarily focused on upregulated genes, potentially overlooking important downregulated genes that could 
also play crucial roles in HCC development. Finally, while our findings suggest promising directions for diagnosis 
and prognosis, the translation of these discoveries into effective clinical applications would require more extensive 
research and rigorous testing in clinical settings. Therefore, a thorough investigation of the mechanisms of action of 
the gene will allow more precise and innovative solutions for the prevention, diagnosis, and treatment of HCC. 
 
5. Conclusion 

 
In summary, PSRC1 was upregulated in HCC and correlated to clinic staging and tumor grades. High expression 

of PSRC1 predicted poor prognosis. The distinct characteristics of PSRC1 provide rich starting points for future 
research. PSRC1 exhibits a unique regulatory pattern and function in the context of upregulation in HCC, further 
highlighting its potential roles in the pathogenesis of HCC. The association of PSRC1 with cardiovascular diseases 
offer new perspectives on HCC development. These traits unveil the diversity within HCC, prompting further in-depth 
molecular and cellular investigations to understand their exact roles in hepatocellular carcinoma. Furthermore, the 
findings have the potential to guide the development of novel therapeutic strategies. Given the challenges in HCC 
treatment, the search for new therapeutic avenues is particularly pressing. Building on the understanding of the 
regulatory patterns of PSRC1, future research should focus on innovative treatment methods targeting PSRC1, thus 
intervening more precisely in HCC progression. By utilizing PSRC1 as a target, researchers can explore therapeutic 
strategies targeting specific molecular pathways, thereby enhancing treatment efficacy and alleviating the health 

 
Figure 4. Survival analysis based on the TCGA 
samples reveals high PSRC1 expression predicts 
poor prognosis. The liver hepatocellular carcinoma 
(LIHC) data from the TCGA are used for the 
analysis. 
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burden posed by HCC. A thorough investigation of the mechanisms of action of PSRC1 will allow more precise and 
innovative solutions for the prevention, diagnosis, and treatment of HCC. 
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