
Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

550

An ASIC Implementation of ASCII-to-Braille Conversion for
Electrical/Mechanical Braille Reading Applications

Riley Ruilin Gu1 *

1Lynbrook High School, San Jose, CA, USA
*Corresponding Author: rileyisgu@gmail.com

Advisor: Michael McGivern, mmcgivern@mitre.org

Received August 21, 2024; Revised September 21, 2024; Accepted October 5, 2024

Abstract

A single-chip Application-Specific Integrated Circuit (ASIC) for text-to-Braille conversion has been proposed to
address the limitations of existing solutions, such as limited translation abilities, high costs, and low reliability. This
chip is designed to support both electrical (via light-emitting diodes) and mechanical (using push-pull solenoid
actuators) Braille character displays. The ASIC integrates various components, including a memory block, a character
size calculator, a mapping table, a converter, and a reader, all developed using the Verilog hardware description
language (HDL). It is capable of simultaneously displaying up to 8 Braille characters and introduces a novel feature—
reading pace control—to enhance usability. The text-to-Braille conversion function has been successfully simulated
in Verilog and verified through Field-Programmable Gate Array (FPGA) implementation. The chip is fabricated using
the SkyWater 130nm Complementary Metal-Oxide-Semiconductor (CMOS) process, with 5 metal layers, through the
open-source Tiny Tapeout program. This solution provides a fully-translatable, cost-effective, and mass-
manufacturable design, serving as a scalable logic processor base that can be expanded to display additional Braille
characters concurrently.

Keywords: ASIC, ASCII-to-Braille conversion Chip, Integrated Circuit, FPGA, Verilog

1. Introduction

The emergence of artificial intelligence (AI) has triggered an explosive increase of data exchange within both the
physical and virtual worlds. Society has greatly benefited from the significant changes brought by AI. However,
current data exchange primarily relies on texts, images, or videos, which limits accessibility for people with impaired
vision.

To assist individuals with impaired vision in reading text in real time, several hardware-based text-to-Braille
conversion systems have been proposed. Letters, digits, and punctuation marks in the digital world are represented by
the American Standard Code for Information Interchange (ASCII), therefore text-to-Braille conversion in a digital
medium is often referred to as ASCII-to-Braille conversion. Zhang et al. (2006, 2007) introduced a Field-
Programmable Gate Array (FPGA) solution capable of translating ASCII text into contracted Braille (Blenkhorn, 1997;
Slaby, 1990). This design, while innovative, simplifies implementation by outputting Braille contractions rather than
character-by-character outputs. While this technology proves quite useful, it is hindered by high FPGA costs, not
being a practical option for those learning Braille, and requiring updates for new Braille contractions.

In contrast, Kumari et al. (2020) proposed a solution using a single-board computer (Raspberry Pi), which directly
translates text-images into Braille code. This approach relies on an optical character recognition (OCR) system to
detect characters from the text and then sending the character images to the Raspberry Pi for Braille translation.
Despite its functionality, this is primarily a software-based system, and the reliance on OCR limits its use in digital

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

551

information exchange. Furthermore, incorporating a computer like the Raspberry Pi into the image-to-Braille
conversion process is neither cost-effective nor energy efficient.

Saxena et al. (2022) proposed a hybrid solution combining a discrete-circuit with a Raspberry Pi. In this model,
the ASCII-to-Braille conversion table is implemented using discrete circuitry, while other controls are managed
through software. However, this design supports only uppercase-to-lowercase character translation due to circuit size
limitations. Moreover, the complexity of the discrete circuit raises concerns about long-term reliability.

The common drawback of all these solutions is the lack of user control over reading speed, which is crucial to the
reading experience for individuals with impaired vision.

To address the above issues in the existing solutions, this work focuses on proposing a single chip solution,
Application-Specific Integrated Circuit (ASIC), to implement low-cost, high-speed, character-by-character ASCII-to-
Braille conversion that consumes less power and has higher reliability. A button for reading pace control is
implemented, allowing readers to go through sets of characters at their desired pace. For different purposes, this ASIC
can drive either light-emitting diodes (LED) for prototyping or push-pull solenoid actuators (PPSA) for final
deployment.

This paper is organized as follows: Section 2 introduces the Braille alphabet and its binary representation. Section
3 describes the design details of proposed ASIC for ASCII-to-Braille conversion, including simulation results. FPGA
experimental results are presented in Section 4. Finally, a discussion and conclusion are provided in Section 5 and 6,
respectively.

2. Background of the Braille Alphabet

 The Braille alphabet was invented by Louis Braille in the early 19th century as a tactile reading and writing

system for those who are visually impaired, blind, or deaf-blind. The language uses raised dots and flat dots arranged
in cells, with each cell consisting of six dots organized in a rectangular grid of
two columns and three rows. This system allows for unique six-dot
configurations that represent letters, digits, punctuation marks, and various
indicator characters that are required for clarity. Fig 1. illustrates a basic scope
of how common characters are described through Braille and will serve as the
basis for translation.

In this work, each dot will be replaced with either LED or PPSA. For
example, when LED light is on, it represents a raised dot. When the LED light
is off, it represents a flat dot. The green, red, or white LED is chosen for the
best visual recognition (Fig.2).

In order to display Braille characters with LEDs or

PPSAs, a binary code for each Braille character is
developed. Following the rule that the raised dot is
represented by “1” and the flat dot is represented by “0”,
Fig.2 demonstrates the braille letter “A” encoded into a 6-
bit binary number, bit[5:0]=100000. Beginning from the
upper left corner, each dot is assigned to its binary bit left-
to-right, row-by-row. The other characters are encoded
into binary the same way. However, capital and lower-
case letters as well as a few digits and letters have the

same braille configuration (e.g. ‘3’ & ‘c’). To resolve this conflict, two indicators are used to distinguish capital letters
and digits from their matching counterparts. These two indicators, CAPITAL → 000001b and DIGIT → 010111b,
must come before its corresponding letter or digit to indicate what the following character will be. Therefore, capital
letters and digits require two Braille cells for accurate Braille readings.

Figure 1. Braille alphabet

Figure 2. Binary-coding for Braille character

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

552

3. ASIC Implementation of ASCII-to-Braille Conversion

3.1 Methodology: Hardware Description Language (HDL) and ASIC design flow

Hardware description language, Verilog-HDL, is used to implement this ASCII-to-Braille ASIC (Nelson et al.,
1995). It describes the data flow and timing of a circuit at high level, register-transfer-level (RTL), without being tied
to the fabrication process (Palnitkar, 1996). In RTL, each building block in ASIC is designed/implemented as a
“module” which includes the input/output pin declaration and function description (Fig.3). A top “module” will
contain all building blocks and their interconnections to get the whole ASIC RTL.

As illustrated in Fig.4, after the function of RTL design is verified with Verilog simulator, RTL will be
synthesized to gate-level design, a low level design including logic gates (inverter, nand, nor, flip-flop,…) , to tie to a
selected fabrication process. Following the design rule of this selected fabrication process, gate-level design will be
further converted to physical layout though place-and-route tool. Finally, the ASIC will be fabricated based on this
physical layout.

Figure 3. Example of Verilog module Figure.4 ASIC design flow

3.2 Architecture and operation of ASCII-to-Braille conversion

The block diagram of the proposed ASIC

is shown in Fig. 5. The ASIC contains five
building blocks: memory, ASCII-to-Braille
mapping table, character size calculator,
ASCII-to-Braille converter, Braille buffer and
reader. All of these components are
implemented using Verilog-HDL and
simulated using Icarus Verilog (IIC-JKU,
2022), an open-source Verilog simulator.

The input text file to be translated into
Braille is first loaded into memory in ASCII
format. The character size calculator then scans
the memory to determine the number of ASCII
characters, as well as the number of capital
letters and digits present. As a result of this
process, two character sizes are calculated: the ASCII character size (the number of ASCII characters) and the Braille
character size (the ASCII character size plus the number of indicator characters). Once the character size calculation
is completed, the ASCII-to-Braille converter begins its operation. The converter scans the memory as well, translating

Figure 5. Block diagram of proposed ASIC

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

553

each ASCII character into its corresponding Braille character, adding an indicator character for each capital letter and
digit, and saving every Braille character into a buffer until all ASCII characters have been processed. By sending a
"next" pulse to the reader, 8 Braille characters are transferred from the buffer to an LED-based Braille cell array for
display. When the user sends another "next" pulse, the next 8 Braille characters are sent to the LED-based Braille cell
array, and so on, allowing the user to control the reading pace.

3.3 Design details of building blocks

Memory

Fig. 6 illustrates the design of the memory. This memory can store up to 256 bytes (ASCII characters), with each
byte consisting of 8 bits. It is initialized by loading the input ASCII file. Once the memory receives an address signal
from either the size calculator or the ASCII-to-
Braille converter, the data stored at that address will
be sent to the size calculator and the ASCII-to-
Braille converter.

Character size calculator

Fig. 7 illustrates the design of the character size
calculator. When the "reset" signal is asserted (0),
the memory address, ASCII size, Braille size, and
size_done flag are all cleared to 0. When the "reset"
signal is released (1), the size calculator first checks
if the size_done flag is set (1). If the size_done flag
is not set (0), the size calculator begins updating the memory address and checks the memory data at the updated

address during each clock cycle. If the memory data is
between 65d and 90d, it represents a capital letter (‘A’ to
‘Z’). If the memory data is between 48d and 57d, it
represents a digit (‘0’ to ‘9’). In these two cases, the
Braille size is incremented by 2 to account for the
indicator characters. For lowercase letters and other
characters, the Braille size increments by 1 every clock
cycle, while the ASCII size consistently increases by 1
during each clock cycle, regardless of the character type.

When the memory data is 0 or the memory address
reaches 255d, it indicates the end of the input ASCII file.
At this point, the two character sizes stop increasing and
are saved into the ascii_size and braille_size registers,

respectively. The size_done flag is then set to 1, and the
memory address is reset to 0.

In the simulation waveforms shown in Fig. 8, there
are 14 ASCII characters (43h, 61h, 74h, 54h, 6Fh, 6Dh,
6Ch, 69h, 6Fh, 6Eh, 6Bh, 69h, 6Eh, 67h) stored in
memory addresses 00h~0Dh (0d~13d). Therefore, the
ascii_size is 0Eh (14d). However, since the ASCII
characters 43h and 54h represent the capital letters "C"
and "T," respectively, the braille_size becomes 10h
(16d) to account for the inclusion of two capital
indicators.

Figure 6. Memory implementation

Figure 7. Implementation of the character size
calculator

Figure 8. Simulation waveforms of the character size
calculator

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

554

ASCII-to-Braille converter and ASCII-to-Braille mapping table
Fig. 9 illustrates the design of the ASCII-to-Braille converter. Since the memory address is reset to 0 when the

size calculation is completed, the converter begins translating the ASCII data to Braille code starting from the first
ASCII character in memory. When the memory
data falls within the ranges 65d-90d (for capital
letters) or 48d-57d (for digits), the converter first
outputs a capital Braille indicator (00000001b)
or a digit Braille indicator (00010111b), along
with an indicator flag, indi, while keeping the
memory address unchanged. In the next clock
cycle, based on the indi flag, the ASCII data at
the same memory address is mapped to its
corresponding Braille code using the mapping
tables shown in Fig. 10 (a, c). Thus, the
conversion of capital letters and digits requires
two clock cycles, first to provide the indicator
character and the second for the character code
itself. The conversion of lowercase letters and punctuation marks does not require a Braille indicator in front of them
and is directly mapped to Braille code in one clock cycle using the mapping tables shown in Fig. 10 (b, c).

The braille_valid signal is used to inform the reader when the converter output is valid. Before the memory
address reaches ascii_size (which is determined by the size calculator), braille_valid remains at 1. Once the conversion
is completed (when the memory address reaches ascii_size), braille_valid returns to 0, the converter continuously
outputs 0, and the memory address stays at ascii_size.

Figure 10(a). ASCII-to-Braille
mapping table, uppercase letters

Figure 10(b). ASCII-to-Braille
mapping table, lowercase letters

Figure 10(c). ASCII-to-Braille
mapping table, digits & punctuation
marks

In the simulation waveforms shown in Fig. 11, the memory ASCII data 43h (67d in the mapping table,

representing the capital letter "C") is converted into two Braille codes: the capital indicator 01h and the letter 30h.
Similarly, the memory ASCII data 54h (84d in the mapping table, representing the capital letter "T") is also converted
into two Braille codes: the capital indicator 01h and the letter 1Eh. From the memory address/data waveform, you can
see that these two conversions require two clock cycles, whereas the other conversions (61h→20h, 74h→1Eh,
6Fh→26h, 6Dh→32h, 6Ch→2Ah, 69h→18h, 6Fh→26h, 6Eh→36h, 6Bh→22h, 69h→18h, 6Eh→36h, 67h→3Ch)
each take only one clock cycle. The braille_valid signal remains at 1 to indicate that all Braille outputs are valid.

Figure 9. Implementation of ASCII-to-Braille conversion

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

555

Braille buffer and reader
The Braille buffer and reader store the received

Braille codes in a buffer and send them to the reader to
drive the LED or PPSA as requested. This process
operates as a 6-state Finite-State Machine (FSM), as
illustrated in Fig.12 and Fig.13.

After reset is released, FSM stays in the IDLE state
and waits for braille_valid to be flagged. When
braille_valid is “1”, braille_size is loaded into
loaded_braille_size (Fig.12) and the FSM enters the
LOADING state (Fig.13).

Figure 12. Functions in each FSM state Figure 13. FSM in Braille buffer and reader

In the LOADING state, as long as buffer_index (address) is less than loaded_braille_size, the Braille codes

coming from the converter will be stored into buffer one-by-one at each clock cycle (Fig.12). After the last Braille
code is saved, the FSM enters the START_SIGNAL state (Fig.13).

The START_SIGNAL state lasts until a “next” signal sent by the user is detected. During this state, all 8 readers
are set to 17h (Fig.12) which indicates the Braille codes are ready for reading. When the “next” pulse is detected, the
FSM state is changed to SENDING (Fig.13).

In the SENDING state, when the “next” signal sent by the user is detected, 8 Braille codes stored in the buffer
will be read out through 8 readers simultaneously (Fig.12). The user can continue sending “next” signal pulses to read
the next 8 Braille codes until the last set of eight Braille codes is read out. Only then will the FSM move to the
WAIT_NEXT state (Fig.13).

In WAIT_NEXT state, FSM does nothing but wait for the user to press the “next” button again such that it can
tell the user that they have reached the end. When this final “next” signal comes, the FSM enters the END_SIGNAL
state (Fig.13) and all 8 readers are cleared to 01h which indicates the end of the reading (Fig.12).

From the simulation waveforms of Fig.14, in LOAD state (1h), the buffer_index keeps increasing at each clock
cycle until 0Fh (15d) is reached. This means a total of 16 Braille codes are stored into the buffer. In the
START_SIGNAL state (2h), all reader_out signals are set to 17h to indicate the start of reading. In the SENDING

Figure 11. Simulation waveforms of ASCII-to-Braille
converter

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

556

state (3h), when the 1st “next” signal comes, the 1st 8 Braille codes are sent to readers 1~8 in the first read cycle. When
the 2nd “NEXT” signal comes, the following 8 Braille codes are sent to readers 1~8 in the second read cycle. Since all
Braille codes have been read out, all reader_out signals will be set to 01h once the 3rd “NEXT” signal arrives. This
indicates to the user that the reading has finished.

3.4 Synthesis and Place-and-Route (RTL-to-Gate-to-
Layout)

The layout database is directly derived from the
Verilog RTL using OpenLane (IIC-JKU, 2022), an
open-source digital ASIC implementation flow. The
process used is the 130nm SkyWater SKY130 CMOS
process, which includes 5 metal layers. The layout is
shown in Fig.15, and the die area is 401.125 µm ×
411.845 µm.

4. Measurement Results

The functionality of this ASIC is verified using an FPGA, as the FPGA
design flow closely resembles the ASIC design flow (Fig. 16). In addition
to the Verilog RTL developed for the ASIC, a clock generator must be
integrated to allow the FPGA to operate independently of an external clock
source. Since the logic gates are pre-fabricated within the FPGA, the
synthesized gate-level design can be implemented by configuring these
existing logic gates through FPGA programming.

As illustrated in Fig. 17(a), the left side shows the ARTY Z7 SoC
development board (Digilent, 2020). The Verilog code developed for
ASCII-to-Braille conversion is synthesized and programmed into the Xilinx

ZYNQ-7000 FPGA (Xilinx, 2018), which is located in the center of
the board, to implement the hardware version of the ASCII-to-Braille
conversion. Additionally, a 5 MHz clock-wizard IP is instantiated from
the Xilinx library and integrated into the ASIC to provide the clock
signal for the converter. Due to the limited number of output ports on
the ARTY Z7 board, up to 4 Braille cells can be constructed and
demonstrated in the experiments. In experiment #1 (Fig. 17a), 6 LEDs
are used to construct one Braille cell. In experiment #2 (Fig. 17b), 24
LEDs are used to construct 4 Braille cells. (The LEDs can be replaced
with PPSAs for mechanical reading; however, in this measurement,
only LEDs are used.)

Figure 17(a). Single Braille cell FPGA setup Figure 17(b). Quad Braille cell FPGA setup

Figure 14. Simulation waveforms of Braille
Buffer/Reader

Figure 15. Synthesized layout of the
ASCII-to-Braille conversion ASIC

Figure 16. FPGA design flow

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

557

In experiment #1, the text "Hello, bwsi!" is programmed into memory during FPGA synthesis and programming.
This simple experiment utilized only one display cell, therefore displaying one character at a time from the braille
code buffer. A single LED Braille cell will display this text character by character. Through the ASCII-to-Braille
conversion performed by the ASIC, the translated Braille codes are shown in Fig. 18.

Capital Indicator “h” “e” “l” “l” “o”

“,” “b” “w” “s” “i” “!”

Figure 18. One LED Braille cell display of “Hello, bwsi!”

In experiment #2, text
“Text to Braille” is
programmed into memory
after initialization. Four
LED Braille cells can
display 4 Braille
characters at one time.
When reset is asserted, all
4 cells display “SPACE”.
After reset is released and
the translated Braille
codes are loaded into the
buffer, all 4 cells display
“START” indicating it is
time for reading. By
pressing the “next” button
(Fig.17a), the translated
Braille codes are shown in
Fig.19. The last 4
“CAPITAL” indicate the
“END” of the text.

Compared to the
simulation results shown
in Fig.20, the
measurement exactly

4 “SPACE”s (00/00/00/00h, when reset is
asserted)

4 “START” signals (17/17/17/17h after
loading)

“CAPITAL”, “T”, “e”, “x” (01/1E/24/33h) “t”, “SPACE”, “t”, “o” (1E/00/1E/26h)

“SPACE”, “CAPITAL”, “B”, “r”
(00/01/28/2Eh)

“a”, “i”, “l”, “l” (20/18/2A/2Ah)

“e”, “SPACE”, “SPACE”, “SPACE”
(24/00/00/00h)

4 “END” Signals (01/01/01/01,
“CAPITAL”s)

Figure 19. Quad-LED Braille cells display of “Text to Braille”

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

558

matches the simulation, from reset all the way to “END”. Please note that reader*_out has 8 bits while the Braille cell
only requires 6 bits. The two most significant bits (MSBs) of read*_out are not used. They are designed for redundancy.

Figure 20. Simulation waveforms for the Quad-Braille-cell reader

5. Discussion: Comparisons and Future Improvements

A comparison of the proposed ASCII-to-Braille ASIC solution with previous hardware solutions is given in Table
1. The ASIC solution offers a more user-friendly, energy-efficient, cost-effective, mass-manufacturable, and space-
conscious logic implementation in comparison to the solutions of FPGA, single-board computers, general-purpose
microcontrollers, and discrete circuits.

Table 1. Comparison with previous hardware solutions
References Zhang et al. (2006) Kumari et al. (2020) Saxena et al. (2022) Proposed solution

Implementation
method FPGA Single board

computer
Discrete circuits +

Single board computer ASIC

Translation
capability

Contracted Braille
communication Image-to-character Upper-to-lowercase

only ASCII-to-character

Reading pace
control No No No Yes

Translation speed Fast Slow Medium Fast
Area Small Large Large Small

Power
Consumption

Medium High High Low

Reliability High High Low High
Cost High High High Low

This ASIC's logic is easily scalable towards larger applications, as demonstrated in Section 4. While the Verilog

hardware description language currently supports eight simultaneous readers, experiments #1 and #2 showcase the
use of one and four readers, respectively. It is important to note that the latter experiments used fewer than eight
readers due to pin limitations during the FPGA prototyping. By adjusting the number of readers, more efficient and
practical Braille display applications can be developed. Considering that the average sentence length is 47.2 characters,
a display with 64 Braille cells would provide more intuitive reading for visually impaired individuals.

However, there remain some challenges that need to be addressed before supporting 64 Braille cells.
Implementing 64 readers in parallel would significantly increase the chip's width, resulting in a narrow rectangular
shape instead of a square. This may introduce mechanical stress within the chip, potentially affecting the die saw
process and mass production. Additionally, the varying routing distances connecting the 64 readers could result in
timing skew, which may cause incorrect translations in a real-time operation. Both of these issues require careful
investigation and solutions.

Moreover, due to limitations in the chip area and pin count as well as the absence of static random access memory
(SRAM) in the Tiny Tape-Out program, the chip's memory is implemented using register-based read-only memory
(ROM). The contents of this ROM are fixed and cannot be updated in real time. So, to create a practical product, the
ROM would need to be replaced with SRAM to store an entire page of content. Additionally, an interface must be
investigated and incorporated to bridge the connection between a computer and the converter, enabling real-time
updates to the SRAM content.

Vol. 2024 (12) 550 – 559
ISSN 2688-3651 [online]

559

6. Conclusion

This paper presents a novel ASCII-to-Braille conversion application specific integrated circuit designed for both
electrical and mechanical output applications. The ASIC has demonstrated effective functionality and has successfully
met the specific requirements of the intended application. With an inherently scalable design logic, expansion towards
larger systems of multiple Braille cells could be easily implemented, allowing for more versatile and practical use
cases. This chip provides a more user-friendly interface through the “next” pin that permits readers to proceed at their
own pace as they interact with digital content. This work not only provides a practical solution for real-time text-to-
Braille translation but also lays the groundwork for future developments in accessible technology.

Verilog source code for the ASIC can be viewed at https://github.com/rileyguu/ASCII-to-Braille.git

Acknowledgements

The author thanks MIT Beaver Works Summer Institute ASIC program for the technical and financial support to
this work and chip fabrication through open-source Tiny Tape-out program 8 (TT-8).

References

Blenkhorn, P. (1997). A System for Converting Print into Braille. IEEE Transactions on Rehabilitation
Engineering, vol.5, no. 2, June 1997

Digilent (2020). ARTY-Z7 schematic

Durre I., and Tuttle D. (1991). A Universal Computer Braille Code for Literary and Scientific Texts. International
Technology Conference, December 1991. IEEE

Editors of Encyclopedia Britannica. (2019). Braille | writing system. In Encyclopedia Britannica.
https://www.britannica.com/topic/Braille-writing-system

IIC-JKU. (2022). GitHub - iic-jku/IIC-OSIC-TOOLS: IIC-OSIC-TOOLS is an all-in-one Docker image for
SKY130/GF180/IHP130-based analog and digital chip design. AMD64 and ARM64 are natively supported. GitHub.
https://github.com/iic-jku/IIC-OSIC-TOOLS

Kumari, S., et al. (2020). Enhanced Braille Display: Use of OCR and Solenoid to Improve Text to Braille
Conversion. 2020 International Conference for Emerging Technology (INCET). IEEE

Nelson, V. et al, (1995). Digital Logic Circuit Analysis and Design. Prentice Hall

Palnitkar, S. (1996). Verilog-HDL: A Guide to Digital Design and Synthesis. SunSoft Press, A Prentice Hall Title

Saxena, A., et al. (2022). A Device for Automatic Conversion of Speech to Text and Braille for Visually and
Hearing Impaired Persons. 2022 8th International Conference on Signal Processing and Communication (ICSC).
IEEE.

Slaby W. (1990). Computerized Braille Translation. Journal of Microcomputer Application, vol.13, issue n2, pp
107-113, 1990. IEEE

Xilinx (July 2, 2018). Zynq-7000 SoC Data Sheet: Overview

Zhang, X., et al. (2006). Text-to-Braille Translator in a Chip. 2006 4th International Conference on Electrical and
Computer Engineering (ICECE). IEEE.

Zhang, X., et al. (2007). A System for Fast Text-to-Braille Translation Based on FPGAs. 2007 3rd Southern
Conference on Programmable Logic. IEEE.

