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Abstract 

A single-chip Application-Specific Integrated Circuit (ASIC) for text-to-Braille conversion has been proposed to 
address the limitations of existing solutions, such as limited translation abilities, high costs, and low reliability. This 
chip is designed to support both electrical (via light-emitting diodes) and mechanical (using push-pull solenoid 
actuators) Braille character displays. The ASIC integrates various components, including a memory block, a character 
size calculator, a mapping table, a converter, and a reader, all developed using the Verilog hardware description 
language (HDL). It is capable of simultaneously displaying up to 8 Braille characters and introduces a novel feature—
reading pace control—to enhance usability. The text-to-Braille conversion function has been successfully simulated 
in Verilog and verified through Field-Programmable Gate Array (FPGA) implementation. The chip is fabricated using 
the SkyWater 130nm Complementary Metal-Oxide-Semiconductor (CMOS) process, with 5 metal layers, through the 
open-source Tiny Tapeout program. This solution provides a fully-translatable, cost-effective, and mass-
manufacturable design, serving as a scalable logic processor base that can be expanded to display additional Braille 
characters concurrently. 
 
Keywords: ASIC, ASCII-to-Braille conversion Chip, Integrated Circuit, FPGA, Verilog 
 
1. Introduction 
 

The emergence of artificial intelligence (AI) has triggered an explosive increase of data exchange within both the 
physical and virtual worlds. Society has greatly benefited from the significant changes brought by AI. However, 
current data exchange primarily relies on texts, images, or videos, which limits accessibility for people with impaired 
vision. 

To assist individuals with impaired vision in reading text in real time, several hardware-based text-to-Braille 
conversion systems have been proposed. Letters, digits, and punctuation marks in the digital world are represented by 
the American Standard Code for Information Interchange (ASCII), therefore text-to-Braille conversion in a digital 
medium is often referred to as ASCII-to-Braille conversion. Zhang et al. (2006, 2007) introduced a Field-
Programmable Gate Array (FPGA) solution capable of translating ASCII text into contracted Braille (Blenkhorn, 1997; 
Slaby, 1990). This design, while innovative, simplifies implementation by outputting Braille contractions rather than 
character-by-character outputs. While this technology proves quite useful, it is hindered by high FPGA costs, not 
being a practical option for those learning Braille, and requiring updates for new Braille contractions. 

In contrast, Kumari et al. (2020) proposed a solution using a single-board computer (Raspberry Pi), which directly 
translates text-images into Braille code. This approach relies on an optical character recognition (OCR) system to 
detect characters from the text and then sending the character images to the Raspberry Pi for Braille translation. 
Despite its functionality, this is primarily a software-based system, and the reliance on OCR limits its use in digital 
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information exchange. Furthermore, incorporating a computer like the Raspberry Pi into the image-to-Braille 
conversion process is neither cost-effective nor energy efficient. 

Saxena et al. (2022) proposed a hybrid solution combining a discrete-circuit with a Raspberry Pi. In this model, 
the ASCII-to-Braille conversion table is implemented using discrete circuitry, while other controls are managed 
through software. However, this design supports only uppercase-to-lowercase character translation due to circuit size 
limitations. Moreover, the complexity of the discrete circuit raises concerns about long-term reliability.  

The common drawback of all these solutions is the lack of user control over reading speed, which is crucial to the 
reading experience for individuals with impaired vision. 

To address the above issues in the existing solutions, this work focuses on proposing a single chip solution, 
Application-Specific Integrated Circuit (ASIC), to implement low-cost, high-speed, character-by-character ASCII-to-
Braille conversion that consumes less power and has higher reliability. A button for reading pace control is 
implemented, allowing readers to go through sets of characters at their desired pace. For different purposes, this ASIC 
can drive either light-emitting diodes (LED) for prototyping or push-pull solenoid actuators (PPSA) for final 
deployment. 

This paper is organized as follows: Section 2 introduces the Braille alphabet and its binary representation. Section 
3 describes the design details of proposed ASIC for ASCII-to-Braille conversion, including simulation results. FPGA 
experimental results are presented in Section 4. Finally, a discussion and conclusion are provided in Section 5 and 6, 
respectively. 
 
2. Background of the Braille Alphabet 

 
 The Braille alphabet was invented by Louis Braille in the early 19th century as a tactile reading and writing 

system for those who are visually impaired, blind, or deaf-blind. The language uses raised dots and flat dots arranged 
in cells, with each cell consisting of six dots organized in a rectangular grid of 
two columns and three rows. This system allows for unique six-dot 
configurations that represent letters, digits, punctuation marks, and various 
indicator characters that are required for clarity. Fig 1. illustrates a basic scope 
of how common characters are described through Braille and will serve as the 
basis for translation. 

In this work, each dot will be replaced with either LED or PPSA. For 
example, when LED light is on, it represents a raised dot. When the LED light 
is off, it represents a flat dot. The green, red, or white LED is chosen for the 
best visual recognition (Fig.2). 

 
In order to display Braille characters with LEDs or 

PPSAs, a binary code for each Braille character is 
developed. Following the rule that the raised dot is 
represented by “1” and the flat dot is represented by “0”, 
Fig.2 demonstrates the braille letter “A” encoded into a 6-
bit binary number, bit[5:0]=100000. Beginning from the 
upper left corner, each dot is assigned to its binary bit left-
to-right, row-by-row. The other characters are encoded 
into binary the same way. However, capital and lower-
case letters as well as a few digits and letters have the 

same braille configuration (e.g. ‘3’ & ‘c’). To resolve this conflict, two indicators are used to distinguish capital letters 
and digits from their matching counterparts. These two indicators, CAPITAL → 000001b and DIGIT → 010111b, 
must come before its corresponding letter or digit to indicate what the following character will be. Therefore, capital 
letters and digits require two Braille cells for accurate Braille readings. 

 

 
Figure 1. Braille alphabet 

 
Figure 2. Binary-coding for Braille character 
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3. ASIC Implementation of ASCII-to-Braille Conversion 
 

3.1 Methodology: Hardware Description Language (HDL) and ASIC design flow 
 

Hardware description language, Verilog-HDL, is used to implement this ASCII-to-Braille ASIC (Nelson et al., 
1995). It describes the data flow and timing of a circuit at high level, register-transfer-level (RTL), without being tied 
to the fabrication process (Palnitkar, 1996). In RTL, each building block in ASIC is designed/implemented as a 
“module” which includes the input/output pin declaration and function description (Fig.3). A top “module” will 
contain all building blocks and their interconnections to get the whole ASIC RTL. 

As illustrated in Fig.4, after the function of RTL design is verified with Verilog simulator, RTL will be 
synthesized to gate-level design, a low level design including logic gates (inverter, nand, nor, flip-flop,…) , to tie to a 
selected fabrication process. Following the design rule of this selected fabrication process, gate-level design will be 
further converted to physical layout though place-and-route tool. Finally, the ASIC will be fabricated based on this 
physical layout. 

 
 

Figure 3. Example of Verilog module Figure.4 ASIC design flow 
 
3.2 Architecture and operation of ASCII-to-Braille conversion 

 
The block diagram of the proposed ASIC 

is shown in Fig. 5. The ASIC contains five 
building blocks: memory, ASCII-to-Braille 
mapping table, character size calculator, 
ASCII-to-Braille converter, Braille buffer and 
reader. All of these components are 
implemented using Verilog-HDL and 
simulated using Icarus Verilog (IIC-JKU, 
2022), an open-source Verilog simulator. 

The input text file to be translated into 
Braille is first loaded into memory in ASCII 
format. The character size calculator then scans 
the memory to determine the number of ASCII 
characters, as well as the number of capital 
letters and digits present. As a result of this 
process, two character sizes are calculated: the ASCII character size (the number of ASCII characters) and the Braille 
character size (the ASCII character size plus the number of indicator characters). Once the character size calculation 
is completed, the ASCII-to-Braille converter begins its operation. The converter scans the memory as well, translating 

 
Figure 5. Block diagram of proposed ASIC 
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each ASCII character into its corresponding Braille character, adding an indicator character for each capital letter and 
digit, and saving every Braille character into a buffer until all ASCII characters have been processed. By sending a 
"next" pulse to the reader, 8 Braille characters are transferred from the buffer to an LED-based Braille cell array for 
display. When the user sends another "next" pulse, the next 8 Braille characters are sent to the LED-based Braille cell 
array, and so on, allowing the user to control the reading pace. 
 
3.3 Design details of building blocks 
 
Memory 

Fig. 6 illustrates the design of the memory. This memory can store up to 256 bytes (ASCII characters), with each 
byte consisting of 8 bits. It is initialized by loading the input ASCII file. Once the memory receives an address signal 
from either the size calculator or the ASCII-to-
Braille converter, the data stored at that address will 
be sent to the size calculator and the ASCII-to-
Braille converter. 
 
Character size calculator 

Fig. 7 illustrates the design of the character size 
calculator. When the "reset" signal is asserted (0), 
the memory address, ASCII size, Braille size, and 
size_done flag are all cleared to 0. When the "reset" 
signal is released (1), the size calculator first checks 
if the size_done flag is set (1). If the size_done flag 
is not set (0), the size calculator begins updating the memory address and checks the memory data at the updated 

address during each clock cycle. If the memory data is 
between 65d and 90d, it represents a capital letter (‘A’ to 
‘Z’). If the memory data is between 48d and 57d, it 
represents a digit (‘0’ to ‘9’). In these two cases, the 
Braille size is incremented by 2 to account for the 
indicator characters. For lowercase letters and other 
characters, the Braille size increments by 1 every clock 
cycle, while the ASCII size consistently increases by 1 
during each clock cycle, regardless of the character type. 

When the memory data is 0 or the memory address 
reaches 255d, it indicates the end of the input ASCII file. 
At this point, the two character sizes stop increasing and 
are saved into the ascii_size and braille_size registers, 

respectively. The size_done flag is then set to 1, and the 
memory address is reset to 0. 

In the simulation waveforms shown in Fig. 8, there 
are 14 ASCII characters (43h, 61h, 74h, 54h, 6Fh, 6Dh, 
6Ch, 69h, 6Fh, 6Eh, 6Bh, 69h, 6Eh, 67h) stored in 
memory addresses 00h~0Dh (0d~13d). Therefore, the 
ascii_size is 0Eh (14d). However, since the ASCII 
characters 43h and 54h represent the capital letters "C" 
and "T," respectively, the braille_size becomes 10h 
(16d) to account for the inclusion of two capital 
indicators. 
 

 
Figure 6. Memory implementation 

 
Figure 7. Implementation of the character size 
calculator 

 
Figure 8. Simulation waveforms of the character size 
calculator 
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ASCII-to-Braille converter and ASCII-to-Braille mapping table 
Fig. 9 illustrates the design of the ASCII-to-Braille converter. Since the memory address is reset to 0 when the 

size calculation is completed, the converter begins translating the ASCII data to Braille code starting from the first 
ASCII character in memory. When the memory 
data falls within the ranges 65d-90d (for capital 
letters) or 48d-57d (for digits), the converter first 
outputs a capital Braille indicator (00000001b) 
or a digit Braille indicator (00010111b), along 
with an indicator flag, indi, while keeping the 
memory address unchanged. In the next clock 
cycle, based on the indi flag, the ASCII data at 
the same memory address is mapped to its 
corresponding Braille code using the mapping 
tables shown in Fig. 10 (a, c). Thus, the 
conversion of capital letters and digits requires 
two clock cycles, first to provide the indicator 
character and the second for the character code 
itself. The conversion of lowercase letters and punctuation marks does not require a Braille indicator in front of them 
and is directly mapped to Braille code in one clock cycle using the mapping tables shown in Fig. 10 (b, c). 

The braille_valid signal is used to inform the reader when the converter output is valid. Before the memory 
address reaches ascii_size (which is determined by the size calculator), braille_valid remains at 1. Once the conversion 
is completed (when the memory address reaches ascii_size), braille_valid returns to 0, the converter continuously 
outputs 0, and the memory address stays at ascii_size. 

 

   
Figure 10(a). ASCII-to-Braille 
mapping table, uppercase letters 

Figure 10(b). ASCII-to-Braille 
mapping table, lowercase letters 

Figure 10(c). ASCII-to-Braille 
mapping table, digits & punctuation 
marks 

 
In the simulation waveforms shown in Fig. 11, the memory ASCII data 43h (67d in the mapping table, 

representing the capital letter "C") is converted into two Braille codes: the capital indicator 01h and the letter 30h. 
Similarly, the memory ASCII data 54h (84d in the mapping table, representing the capital letter "T") is also converted 
into two Braille codes: the capital indicator 01h and the letter 1Eh. From the memory address/data waveform, you can 
see that these two conversions require two clock cycles, whereas the other conversions (61h→20h, 74h→1Eh, 
6Fh→26h, 6Dh→32h, 6Ch→2Ah, 69h→18h, 6Fh→26h, 6Eh→36h, 6Bh→22h, 69h→18h, 6Eh→36h, 67h→3Ch) 
each take only one clock cycle. The braille_valid signal remains at 1 to indicate that all Braille outputs are valid. 

 
Figure 9. Implementation of ASCII-to-Braille conversion 
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Braille buffer and reader 
The Braille buffer and reader store the received 

Braille codes in a buffer and send them to the reader to 
drive the LED or PPSA as requested. This process 
operates as a 6-state Finite-State Machine (FSM), as 
illustrated in Fig.12 and Fig.13.  

After reset is released, FSM stays in the IDLE state 
and waits for braille_valid to be flagged. When 
braille_valid is “1”, braille_size is loaded into 
loaded_braille_size (Fig.12) and the FSM enters the 
LOADING state (Fig.13). 
 

  
Figure 12. Functions in each FSM state Figure 13. FSM in Braille buffer and reader 

 
In the LOADING state, as long as buffer_index (address) is less than loaded_braille_size, the Braille codes 

coming from the converter will be stored into buffer one-by-one at each clock cycle (Fig.12). After the last Braille 
code is saved, the FSM enters the START_SIGNAL state (Fig.13).  

The START_SIGNAL state lasts until a “next” signal sent by the user is detected. During this state, all 8 readers 
are set to 17h (Fig.12) which indicates the Braille codes are ready for reading. When the “next” pulse is detected, the 
FSM state is changed to SENDING (Fig.13).  

In the SENDING state, when the “next” signal sent by the user is detected, 8 Braille codes stored in the buffer 
will be read out through 8 readers simultaneously (Fig.12).  The user can continue sending “next” signal pulses to read 
the next 8 Braille codes until the last set of eight Braille codes is read out. Only then will the FSM move to the 
WAIT_NEXT state (Fig.13). 

In WAIT_NEXT state, FSM does nothing but wait for the user to press the “next” button again such that it can 
tell the user that they have reached the end. When this final “next” signal comes, the FSM enters the END_SIGNAL 
state (Fig.13) and all 8 readers are cleared to 01h which indicates the end of the reading (Fig.12). 

From the simulation waveforms of Fig.14, in LOAD state (1h), the buffer_index keeps increasing at each clock 
cycle until 0Fh (15d) is reached. This means a total of 16 Braille codes are stored into the buffer. In the 
START_SIGNAL state (2h), all reader_out signals are set to 17h to indicate the start of reading. In the SENDING 

 
Figure 11. Simulation waveforms of ASCII-to-Braille 
converter 
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state (3h), when the 1st “next” signal comes, the 1st 8 Braille codes are sent to readers 1~8 in the first read cycle. When 
the 2nd “NEXT” signal comes, the following 8 Braille codes are sent to readers 1~8 in the second read cycle. Since all 
Braille codes have been read out, all reader_out signals will be set to 01h once the 3rd “NEXT” signal arrives. This  
indicates to the user that the reading has finished. 

3.4  Synthesis and Place-and-Route (RTL-to-Gate-to-
Layout) 
 

The layout database is directly derived from the 
Verilog RTL using OpenLane (IIC-JKU, 2022), an 
open-source digital ASIC implementation flow. The 
process used is the 130nm SkyWater SKY130 CMOS 
process, which includes 5 metal layers. The layout is 
shown in Fig.15, and the die area is 401.125 µm × 
411.845 µm. 
 

4. Measurement Results 
 

The functionality of this ASIC is verified using an FPGA, as the FPGA 
design flow closely resembles the ASIC design flow (Fig. 16). In addition 
to the Verilog RTL developed for the ASIC, a clock generator must be 
integrated to allow the FPGA to operate independently of an external clock 
source. Since the logic gates are pre-fabricated within the FPGA, the 
synthesized gate-level design can be implemented by configuring these 
existing logic gates through FPGA programming. 

As illustrated in Fig. 17(a), the left side shows the ARTY Z7 SoC 
development board (Digilent, 2020). The Verilog code developed for 
ASCII-to-Braille conversion is synthesized and programmed into the Xilinx 

ZYNQ-7000 FPGA (Xilinx, 2018), which is located in the center of 
the board, to implement the hardware version of the ASCII-to-Braille 
conversion. Additionally, a 5 MHz clock-wizard IP is instantiated from 
the Xilinx library and integrated into the ASIC to provide the clock 
signal for the converter. Due to the limited number of output ports on 
the ARTY Z7 board, up to 4 Braille cells can be constructed and 
demonstrated in the experiments. In experiment #1 (Fig. 17a), 6 LEDs 
are used to construct one Braille cell. In experiment #2 (Fig. 17b), 24 
LEDs are used to construct 4 Braille cells. (The LEDs can be replaced 
with PPSAs for mechanical reading; however, in this measurement, 
only LEDs are used.) 

  
Figure 17(a). Single Braille cell FPGA setup Figure 17(b). Quad Braille cell FPGA setup 

 
Figure 14. Simulation waveforms of Braille 
Buffer/Reader 

 
Figure 15. Synthesized layout of the 
ASCII-to-Braille conversion ASIC 

 
Figure 16. FPGA design flow 
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In experiment #1, the text "Hello, bwsi!" is programmed into memory during FPGA synthesis and programming. 
This simple experiment utilized only one display cell, therefore displaying one character at a time from the braille 
code buffer. A single LED Braille cell will display this text character by character. Through the ASCII-to-Braille 
conversion performed by the ASIC, the translated Braille codes are shown in Fig. 18. 

 

      
Capital Indicator “h” “e” “l” “l” “o” 

      
“,” “b” “w” “s” “i” “!” 

Figure 18. One LED Braille cell display of “Hello, bwsi!” 
 

In experiment #2, text 
“Text to Braille” is 
programmed into memory 
after initialization. Four 
LED Braille cells can 
display 4 Braille 
characters at one time. 
When reset is asserted, all 
4 cells display “SPACE”. 
After reset is released and 
the translated Braille 
codes are loaded into the 
buffer, all 4 cells display 
“START” indicating it is 
time for reading. By 
pressing the “next” button 
(Fig.17a), the translated 
Braille codes are shown in 
Fig.19. The last 4 
“CAPITAL” indicate the 
“END” of the text.  

Compared to the 
simulation results shown 
in Fig.20, the 
measurement exactly 

  
4 “SPACE”s (00/00/00/00h, when reset is 
asserted) 

4 “START” signals (17/17/17/17h after 
loading) 

  
“CAPITAL”, “T”, “e”, “x” (01/1E/24/33h) “t”, “SPACE”, “t”, “o” (1E/00/1E/26h) 

  
“SPACE”, “CAPITAL”, “B”, “r” 
(00/01/28/2Eh) 

“a”, “i”, “l”, “l” (20/18/2A/2Ah) 

  
“e”, “SPACE”, “SPACE”, “SPACE” 
(24/00/00/00h) 

4 “END” Signals (01/01/01/01, 
“CAPITAL”s) 

Figure 19. Quad-LED Braille cells display of “Text to Braille” 
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matches the simulation, from reset all the way to “END”. Please note that reader*_out has 8 bits while the Braille cell 
only requires 6 bits. The two most significant bits (MSBs) of read*_out are not used. They are designed for redundancy. 
 

 
Figure 20. Simulation waveforms for the Quad-Braille-cell reader 
 
5. Discussion: Comparisons and Future Improvements 
 

A comparison of the proposed ASCII-to-Braille ASIC solution with previous hardware solutions is given in Table 
1. The ASIC solution offers a more user-friendly, energy-efficient, cost-effective, mass-manufacturable, and space-
conscious logic implementation in comparison to the solutions of FPGA, single-board computers, general-purpose 
microcontrollers, and discrete circuits. 

Table 1. Comparison with previous hardware solutions 
References Zhang et al. (2006) Kumari et al. (2020) Saxena et al. (2022) Proposed solution 

Implementation 
method FPGA Single board 

computer 
Discrete circuits + 

Single board computer ASIC 

Translation  
capability 

Contracted Braille 
communication Image-to-character Upper-to-lowercase 

only ASCII-to-character 

Reading pace 
control No No No Yes 

Translation speed Fast Slow Medium Fast 
Area Small Large Large Small 

Power 
Consumption 

Medium High High Low 

Reliability High High Low High 
Cost High High High Low 

 
This ASIC's logic is easily scalable towards larger applications, as demonstrated in Section 4. While the Verilog 

hardware description language currently supports eight simultaneous readers, experiments #1 and #2 showcase the 
use of one and four readers, respectively. It is important to note that the latter experiments used fewer than eight 
readers due to pin limitations during the FPGA prototyping. By adjusting the number of readers, more efficient and 
practical Braille display applications can be developed. Considering that the average sentence length is 47.2 characters, 
a display with 64 Braille cells would provide more intuitive reading for visually impaired individuals. 

However, there remain some challenges that need to be addressed before supporting 64 Braille cells. 
Implementing 64 readers in parallel would significantly increase the chip's width, resulting in a narrow rectangular 
shape instead of a square. This may introduce mechanical stress within the chip, potentially affecting the die saw 
process and mass production. Additionally, the varying routing distances connecting the 64 readers could result in 
timing skew, which may cause incorrect translations in a real-time operation. Both of these issues require careful 
investigation and solutions. 

Moreover, due to limitations in the chip area and pin count as well as the absence of static random access memory 
(SRAM) in the Tiny Tape-Out program, the chip's memory is implemented using register-based read-only memory 
(ROM). The contents of this ROM are fixed and cannot be updated in real time. So, to create a practical product, the 
ROM would need to be replaced with SRAM to store an entire page of content. Additionally, an interface must be 
investigated and incorporated to bridge the connection between a computer and the converter, enabling real-time 
updates to the SRAM content. 
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6. Conclusion 
 

This paper presents a novel ASCII-to-Braille conversion application specific integrated circuit designed for both 
electrical and mechanical output applications. The ASIC has demonstrated effective functionality and has successfully 
met the specific requirements of the intended application. With an inherently scalable design logic, expansion towards 
larger systems of multiple Braille cells could be easily implemented, allowing for more versatile and practical use 
cases. This chip provides a more user-friendly interface through the “next” pin that permits readers to proceed at their 
own pace as they interact with digital content. This work not only provides a practical solution for real-time text-to-
Braille translation but also lays the groundwork for future developments in accessible technology. 

Verilog source code for the ASIC can be viewed at https://github.com/rileyguu/ASCII-to-Braille.git 
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