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Abstract 

The COVID-19 pandemic has significantly impacted society, highlighting the need to understand disease dynamics. 
This paper explored the Susceptible-Infected-Recovered (SIR) model, which categorizes populations to simulate 
disease spread. By analyzing the transmission (β) and recovery rates (γ), the model provided insights into epidemic 
behavior. Using COVID-19 data from South Korea (February-April 2020), the study examined the impact of social 
distancing on the effective reproduction number (Rt). The findings showed that interventions effectively reduced Rt, 
demonstrating that the SIR model’s predictions align with observed outcomes in managing outbreaks. The paper 
concluded that even though the SIR model is valuable for showing basic and simple trends for the disease, 
incorporating Rt and more complex alternative models provides a more comprehensive understanding and enhances 
response strategies. This approach is crucial for preparing for future pandemics and developing effective public health 
policies. 
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1. Introduction 
 

The outbreak of COVID-19, caused by the novel Coronavirus SARS-CoV-2, has posed unprecedented societal 
problems, economic crises, and global health issues. For teenagers, school closures and the shift to remote learning 
have posed significant challenges. It has impacted their academic progress, mental and physical health, social skills, 
and overall well-being (Lee et al., 2021; Copeland et al., 2021). As for the economy, major depressions in various 
industries such as retail, hospitality, and tourism have led to a global economic crisis. 

The understanding and management of infectious disease outbreaks have long been supported by the development 
of epidemiological models. One of the most fundamental of these models is the Susceptible-Infected-Recovered (SIR) 
model, introduced by Kermack and McKendrick in 1927 (Kermack & McKendrick, 1927). The SIR model, among 
others, has been instrumental in predicting the spread of infectious diseases and guiding public health interventions 
(Anderson & May, 1991). For instance, during the Spanish Flu, early versions of epidemic models helped in 
understanding transmission dynamics (Mills, Robins, & Lipsitch, 2004), while in more recent times, models similar 
to the SIR have been used to manage the H1N1 influenza pandemic (Chowell & Nishiura, 2008). By providing insights 
into potential future scenarios, these models have played a crucial role in shaping responses to outbreaks. The SIR 
model's continued relevance, especially during the COVID-19 pandemic, underscores the importance of such tools in 
predicting and mitigating the spread of diseases (Fraser et al., 2004; Heesterbeek, 2002). 

Many scholars warn that trending global health issues such as climate change and drug resistance could induce 
more hazardous and frequent pandemics (Prillama, 2022, Georgetown University Medical Center, 2022, Wong 2024). 
As a result, there has been an increasing focus on models that can predict how an infectious disease might spread and 
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how much of the population could get infected. Such models have become a topic of discussion in the news and other 
media. Fortunately, a lot of this work has already been done in the fields of mathematical biology and epidemiology. 
The SIR model helps us comprehend how diseases spread through a population over time. It divides the population 
into three groups: those susceptible to the disease , those infected and infectious, and those who have recovered and 
gained immunity. By understanding the dynamics of these groups, scientists can predict how an epidemic might 
unfold, identify potential control measures, and estimate the impact on healthcare systems. 

While the SIR model has been widely used, this paper uniquely analyzes COVID-19 transmission dynamics using 
data from South Korea. Previous studies have often focused on Western countries, leaving a gap in understanding the 
behavior of the disease in different cultural and social contexts. This study aims to address this gap and provide 
insights that can be generalized to other regions and future pandemics. By analyzing the results of both theoretical 
simulation and empirical data, an examination of the accuracy and applicability of these models has been conducted, 
especially in understanding and predicting the spread of COVID-19. The goal of this paper is to identify the 
implications and limitations of preparing for future pandemics and formulate policies and interventions that will 
protect adolescents from outbreaks. 
 
2. SIR Model 
 

The SIR model was introduced by Kermack and McKendrick in 1927 (Wade, 2023). This model is based on a 
hypothetical disease that has no incubation period, and once cured, the patient develops herd immunity. The SIR 
model mathematically examines this phenomenon through a set of ordinary differential equations (ODEs) that 
establish connections among the variables mentioned above. Numerous studies have expanded upon this theory, 
aiming to explore diverse facets of disease propagation using the straightforward framework of ODEs. In this model, 
individuals fall into three 
categories: Susceptible (S), 
Infected (I), or Recovered (R) 
with acquired immunity. Those 
who are infected transmit the 
disease to susceptible individuals they encounter at a rate represented by β, which means the number of contacts per 
person per time by the probability of disease transmission in a contact between a susceptible and an infective. The 
patient recovery rate is indicated by γ, which is the reciprocal of the infectious period. The relation between the 
parameters and the mathematical equations is indicated in Figure 1. 

 

  

 

𝑑𝑠/𝑑𝑡 = −𝛽𝑆𝐼/𝑁 (1) 

  

𝑑𝐼/𝑑𝑡 = 𝛽𝑆𝐼/𝑁 − 	𝛾𝐼 (2) 

  

𝑑𝑅/𝑑𝑡 = 𝛾𝐼 (3) 

  
Figure 2. The number of individuals susceptible, infected, and 
recovered over time of 250 populations where the transmission 
rate β is 0.6, and the recovery rate γ is 0.01. 

 
Figure 1. Diagram explaining the relation between parameters (Weiss, 2013). 
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The ODEs of the SIR model and their corresponding graph provide a comprehensive understanding of disease 
dynamics. 

1. Susceptible Equation (dS/dt = -βSI/N): This equation, depicted by the red line in Figure 2, represents the 
rate of change in the susceptible population. The decrease in the number of susceptible individuals is 
proportional to the increase in newly infected individuals. This inverse relationship is encapsulated by the 
term βSI/N in the equation. 

2. Infected Equation (dI/dt = βSI/N - γI): This equation, represented by the blue line in the graph, describes the 
rate of change in the infected population. The infected population increases from the number of new 
infections (βSI/N). However, this increase is counterbalanced by the number of individuals who recover or 
die (γI), thereby reducing the infected population. The net change in the infected population is the difference 
between these two values. 

3. Recovered Equation (dR/dt = γI): This equation signifies the rate of change in the removed (recovered or 
deceased) population. As the number of infected individuals decreases due to recovery or death, the number 
of removed individuals correspondingly increases, which is represented by γI in the equation. 

These equations and their graphical representations offer a dynamic view of how an infectious disease propagates 
and gets controlled within a population. The susceptible population decreases as the disease spreads, the infected 
population initially increases but then decreases as individuals recover or die, and the removed population increases 
over time as the disease is brought under control. 

The two variables that had the greatest impact on the spread and control of pandemics were the transmission 
rate β and recovery rate γ. This figure shows the number of infected patients according to the infection equation and 
recovery equation. As the infection ratio increases, the number of infected patients increases, which makes the disease 
more contagious. As the recovery ratio increases, the speed of spreading gets slow and the number of infected patients 
decreases. 

This correlation shows two ways to reduce the number of infected patients and slow down the speed of spreading. 
The first way is to reduce the number of new infections. This is equivalent to reducing β in the SIR model introduced 
above, meaning that the fewer contacts an infected patient has with uninfected people, the lower the maximum number 
of infections. An example of practicing this is social distancing. Another way is to increase the number of infected 
patients cured in a day, for example, by making γ larger. As shown in figure 2, the number of peak infections decreases 
as γ increases (left side of the graph), and the number of peak infections increases as γ decreases (right side of the 
graph). 

 
2.1  Reproduction Numbers 

 
Another parameter that uses this correlation is called Basic Reproduction Number(𝑅0), which shows how 

contagious the disease is. 𝑅0 is β divided by γ and is an indicator of the average number of additional infections that 
occur after an individual is infected. For example, measles has a 𝑅0 of 12 to 18, indicating that an infected individual 

can cause as many as 18 new 
infections (D’Arienzo and 
Coniglio, 2020). 

If β becomes low and γ 
becomes high so that 𝑅0 is less than 
1, the number of infected patients 
will not increase and will die out 
naturally. In a spreadable graph, the 
decrease in the number of infected 
patients is due to a decrease in the 
number of people who can 
potentially be infected. In contrast, 
the graph of a self-dying epidemic, 

 

Figure 3. Basic reproduction number (𝑅0) of Ebola, SARS, HIV, Mumps, 
and Measles. Red represents the initial infection and orange represents the 
secondary infection (Patel et al.,2020). 
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depicted in the left graph in Table 1, shows that the disease cannot spread due to the fact that the number of recovering 
patients is rising faster than the number of people getting infected. The table below shows how 𝑅0 affects the spread 
of a disease. In most cases, this can be divided into three types. If	𝑅0 >1, an infected individual can spread the disease 
to more than one person, which indicates the possibility of an epidemic. If 𝑅0=1, such as seasonal influenza, the 
disease stays stable and has a low chance of inducing an epidemic. If 𝑅0<1, the disease will eventually be eradicated. 

 

For values of 𝑅0 less than 1, as depicted in the left column of Table 1, a person can infect less than one person. 
Therefore, the number of infected people slowly decreases and disappears. Building herd immunity is one of the 
most well-known ways to have 𝑅0<1. Herd immunity is the protection mechanism that can arise when a sufficient 
number of susceptible populations are immune to certain diseases (Randolph and Barreiro, 2020). On the other 
hand, for 𝑅0 values greater than 1, as depicted in the left column of Table 1, a person can infect more than one 
person. In other words, the number of infections increases at a rate that varies depending on the proportion, peaks, and 
then disappears. 

 
2.2  Effective Reproduction Number 
 

The effective reproduction number, often abbreviated as 𝑅eff or 𝑅t, is a pivotal epidemiological measurement that 
quantifies the average number of secondary infections generated by a single infectious individual within a specific 
population. Unlike the basic reproduction number (𝑅0), which estimates the average number of secondary infections 
in a wholly susceptible population,	𝑅t considers factors such as immunity within the population, interventions 
like vaccination or public health measures, or changes in social behavior and environment.  

This measurement is crucial for understanding the transmission dynamics of infectious diseases, particularly 
during epidemics or pandemics. If 𝑅t exceeds 1, it indicates that each infectious individual, on average, is 
transmitting the disease to more than one susceptible individual, leading to sustained transmission. This state may 
potentially lead to an epidemic or outbreak. Conversely, if 𝑅t is less than 1, the number of new infections decreases 
over time, suggesting that the disease is declining within the population. 

Mathematically, 𝑅t can be expressed as the product of 𝑅0 and the proportion of the population that is 
susceptible. This formulation accounts for the reduction in transmission potential as individuals become immune to 
the disease through vaccination or prior infection. 

Understanding 𝑅t is crucial for developing public health interventions and strategies aimed at controlling and 

Table 1. The effect of the basic reproduction number on spreading disease  
 Non-spreadable Spreadable 
  

 

 

 

𝑅0 = 𝛽/𝛾 𝛽 = 0.6; 𝛾 = 0.67; 𝑅0 = 0.9 ≤ 1 𝛽 = 0.6; 𝛾 = 0.01; 𝑅0 = 60 ≥ 1 
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mitigating the spread of infectious diseases. By monitoring changes in 𝑅t over time and implementing appropriate 
measures to keep it below 1, health authorities can effectively manage outbreaks, protect vulnerable populations, and 
ultimately reduce the burden of disease within communities. 

From the definition of 𝑅t shown in equation (4), 𝑅t represents the ratio between the transmission rate (β(t)) and 
the recovery rate (γ(t)) at a specific time (t) (Chen et al., 2020; Heesterbeek, 2002). This value reflects the dynamic 
relationship between the rates of infection and recovery over time. Additionally, it influences the probability of 
encountering an individual who is susceptible to the infection. 

𝑅!(𝑡) = 	
"(!)
%(!)

∙ &
'

      (4) 

By combining equation (1) and equation (2) and applying chain rules and derivative inverse function theorem, 
we can get equation (5). 

!"
!#
=	 !"

!$
∙ !$
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&
− 	𝛾𝐼( ∙ $− &

%#"
( = 	 '&

%#
− 1   (5) 

 
Substituting 𝛾𝑁/𝛽𝑆 with 𝑅t, equation (5) can be written with respect to 𝑅t over a sufficiently small time 

interval, i, can be written: 

𝑅!(𝑡) = 	
-

∆#$
∆#%

.-
      (6) 

Taking into account death (D) in the classical SIR model, the population balance will follow a discrete difference 
∆i𝑆 + ∆i𝐼 + ∆i𝑅 + ∆i𝐷 = 0. Equation (6) can be simplified as 

𝑅!(𝑡) = 	
/∆#&

∆#1.	∆#3
     (7) 

which means 

𝑅!(𝑡) = 	
'45	67849!:;7<

'45	149;=4>:4<.'45	34?!@
      (Contreras et al., 2020).    (8) 

3. Analysis 
 

This section used empirical data from South 
Korea to analyze COVID-19 transmission 
dynamics, especially on how well it follows the 
SIR model. This study also calculated the Rt 
using equation (8) and compared it with other 
research results which have also been conducted 
within the same period. The analysis focuses on 
the period of two months: from February 18, 
2020, when the outbreak spread, to April 19, 
2020, when the outbreak subsided slightly due to 
increased social distancing (Kissler et al., 2020). 

The 18th of February was the day when the 
31st patient, who was eventually called the 
“super spreader”, was reported. Since then, the 
number of newly infected cases has increased 
exponentially as well as the 𝑅t. From the 29th 
of February to the 21st of March, the South Korean government implemented social distancing measures. While 
there was no full lockdown unlike other countries, rules were introduced to limit indoor gatherings in public facilities 
and regulate operating hours for restaurants, aiming to minimize situations where people gather. As depicted in the 

 
Figure 4. Effective reproduction numbers (𝑅t) from the 18th 
of February to the 19th of April in 2020. 
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graph in Figure 4, these measures had a significant impact in reducing the spread of COVID-19. From March 22nd, 
the South Korean government further strengthened social distancing rules. Although new infections continued to 
occur, the number of recovered individuals, indicating those who have developed immunity, increased significantly. 
As a result, as illustrated in Figure 4, the reproduction number converged towards zero. 

 

Figure 5. The left graph shows the number of new infections during the period and the right graph shows the 
number of people who recovered or died during the same period. 

 
Figure 6. The effective reproduction numbers (𝑅t) with a 95 % confidence interval in Gyeonggi Province (Shim, 
E. et al., 2021). 

Equation (8) is favored over other methods due to its simplicity and practicality, as it does not require specialized 
mathematical or scientific expertise to estimate 𝑅t a given population during an epidemic or pandemic. However, 
because it relies on real-time data, uncertainties in input values can greatly impact the results. Various factors, such 
as inconsistencies in case-reporting protocols, delays in diagnosis, and biases in reporting or measurement, can 
contribute to uncertainty in the variables that determine 𝑅t. Considering all the factors, Shim et al. (2021) showed 
different values of 𝑅t over the same period, as depicted in Figure 6. This study analyzes four different regions in 
South Korea: Seoul, Gyeonggi Province, Gyeongbuk Province, and Daegu. While the values may differ, the overall 
trends observed in the graph of Gyeonggi Province, which has the largest population, remained similar. This 
consistency is significant, as it indicates a general pattern of the impact of interventions and the progression of the 
epidemic despite variations in specific values. 
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4. Conclusion 
 
The SIR model, a fundamental tool in epidemiology, offers a mathematical lens through which one can explore 

the intricate dynamics of disease transmission. The COVID-19 pandemic, which struck the globe with unprecedented 
force, served as a stark reminder of the necessity of understanding and modeling the spread of disease. 

The study focused on South Korea, a region that effectively managed the initial outbreak through interventions 
such as social distancing. However, the findings have broader applicability, as the principles of the SIR model, such 
as the impact of transmission and recovery rates on disease spread, are universally relevant. By understanding these 
dynamics, other regions can adapt the findings to their specific contexts and improve their pandemic response 
strategies. Future research can build on this work by examining how cultural, social, and economic factors influence 
the model's parameters in different settings. 

The analysis conducted on COVID-19 transmission dynamics in South Korea, utilizing the SIR model, offered 
valuable insights into the effectiveness of distancing measures and the behavior of the virus within the population. 
This analysis highlighted the significant impact of social distancing measures enforced during a pandemic, leading to 
a reduction of new infections and the gradual convergence of 𝑅t towards zero. 

During the peak of the virus outbreak, stringent measures were imposed, including school shutdowns, limitations 
on large gatherings, and advisories against unnecessary public gatherings. As the virus spread rapidly, these 
restrictions were crucial in curbing transmission. However, as time progressed and a significant portion of the 
population gained immunity through natural infection, the need for such strict measures diminished. 

Upon analyzing the simulation data, a decrease in the transmission rate parameter (𝛽) was observed, coinciding 
with the increase in population immunity. This decline in 𝛽 led to a rapid decrease in the effective reproduction 
number (Rt), as depicted in Figure 5 above. From the graph, it is evident that the natural acquisition of immunity 
within society conferred a form of herd immunity, resulting in a significant reduction in 𝛽. 

Before widespread immunity was achieved, restrictions and social distancing measures served as essential tools 
in mitigating transmission, adding to the protective effect of vaccinations. However, as immunity became more 
prevalent within the population, these measures became less stringent and more voluntary. This shift underscores the 
importance of population immunity in controlling the spread of infectious diseases and highlights the potential role of 
natural immunity in complementing vaccination efforts. 

The SIR model, while useful, has several limitations. It assumes no incubation period, meaning individuals 
become infectious immediately upon contracting the disease, which is not always accurate. Additionally, the model 
assumes perfect immunity post-recovery, which may not hold for all diseases. These assumptions can impact the 
accuracy of the model's predictions. For example, diseases with long incubation periods or partial immunity may 
spread differently than the model suggests. Understanding these limitations is crucial for interpreting the model's 
results and applying them to real-world scenarios. 

A comparative analysis revealed that while the SIR model provides a basic understanding, alternative models 
offer more detailed insights, especially for diseases with complex transmission patterns. Beyond the SIR model, these 
alternative modeling frameworks include the SEIR model, modified SEIR model, MSEIR model, and MSEIRS model, 
which have been proposed to capture nuanced aspects of disease dynamics (He et al., 2020). These models enrich our 
understanding of epidemiology by incorporating factors such as incubation periods, temporary immunity, and newborn 
immunity (Almeida et al., 2019). 

Moreover, the effective reproduction number (Rt) emerged as a critical metric in understanding epidemic 
dynamics, offering insights into the trajectory of disease spread and the effectiveness of interventions. Integrating Rt 
analysis into epidemic modeling enhances our ability to evaluate control measures and anticipate future transmission 
trends. 

In conclusion, the application of mathematical models, such as the SIR model, alongside considerations of Rt and 
exploration of alternative frameworks, empower us to comprehensively understand disease dynamics and allow for 
evidence-based public health strategies. While navigating the challenges posed by infectious diseases like COVID-
19, these tools remain invaluable in our pursuit of global health security. 
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